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Problems of Selection with Restrictions

By C. RADHAKRISHNA RaO
Indion Siatisticol Institute, Calcutta
[Received May 1962)

SUMMARY

The paper important ization of the theory of
regression. A linear fnncuon of a set of variables x,, ..., x,, called predictor
variables, is constructed so as to maximize its correlation with a criterion
varinble ¥, subject to the condition that its oomlluons with other criterion

bles i, ..., Ve ATC gative. Itis d that a lincar function so
determined is useful when selection of individuals is done on the basis of
Xv..n Xy t0 achieve the maximum possible progress in the mean of y,, while
ensuring that no deterioration takes place in the mean values of yy...., y, in
the selected group, compared with the original group of individuals from
which selection is made.

1. INTRODUCTION

IN probiems of selection there is a set of predictor variables (xy, ..., x,), on the basis
of which individuals are selected for certain desired characteristics defined in terms of
criterion variables (y, ..., y,) not observable at the time of selection. It is well known
that the selection function which gives the maximum progress in the mean value of y,
in the selected group is the regression of y; on x;,....x,. [n such a case, it may so
happen that with respect to some of the other criteria y, ..., y, there is 2 deterioration
in the mean values. Is it then possible to determine the selection function in such a
way that maximum possible progress is shown in one characteristic subject 1o the
condition that there is possibly progress but certainly no dclcnorauon in some other
characteristics? In the context of linear regression, the math | problem is that
of determining a linear function of xy,...,x, such that its correlation with y, is
posilive and a maximum subject to the condilion hat its corrclations with yy, ..

are all non-negative. We shail show that such a linear function always exists nng
illustrate its computation,

2, NOTATION AND PRELIMINARY RESULTS
Let x denote the column vector of (x,, ..., xp), A the dispersion matrix of x and ¢;
the column vector of the covariances (cyy, ..., ¢;,) Of y; with X, ..., x,. The matrix of
all columa vectors ¢; is denoted by C and the dispersion matrix of y by Z = (o).
We shall assume that the rank of C is ¢ and that A is non-singular and p>¢. Ifbis
an erbitrary vector of p elements then the correlation of y; and b'x is

(b'c)/ oy b'Ab). @)
‘The object is to determine b such that
(b'ey)/J(b’'Ab) is a maximum
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subject to the conditions
be, >0, be20 (i=2,...9): (22)

this is a problem of non-li p
The following lemmas are useful in the solution of the problem.

Lemma 1. For any vector b of order p for which (2.2) is satisfied, there exists a
vector g of order g such that

(i) m = A-1Cyg satisfies the conditions (2.2), and

o m'c, S b'e,
J@Am)” AL
Any vector b can be expressed as the sum of two vectors, one belonging to the
linear ifold d by the col of A-VC and another orthogonal to it,

the inner produc‘l’ between (wo vectors a and B being defined as a’AP. Hence there
exist vectors g and e such that

b=A"'Cg+Ale=m+Ale=0, ¢AIC=0.
To prove (i), observe that

Oghe mm'e+€A- g =mie, (i=1,....9).
To prove (ii), we have that
VAb=m'Am+€A ez m'Am
and since b'c; = m'c;, we have
m'e > be,
Jim'Am)” {(b'Ab)’

Lemma | reduces the problem to that of determining m, which is of the form A-! Cg.

Lemma 2. The problem of determining g such that, with m = A-! Cg, conditions
(2.2) are satisfied and m'c,/\{(m' Am) is a maximum s equivalent to that of minimizing a
non-negative quadratic form (u—E)’B(u—E) with u restricted to non-negative vectors,
where B and § are computed from the known quantities C and A.

Let v be a vector of order g with non-negative elements only and let g be a solution
of

Cm=CA'Cg=v. 2.3)
Hence g=(CAIC)'v=Ay, m=A"1CAv, (2.9
where A=(C'A0,

m'e, _ » - 1
e ™ J A ™ T A @3)

Writing #,fo; = ¥ (f = 2,...,q) and denoting the elements of A by (a;;), we can write
the square of Lhe denominator in the last term of (2.5) as

8+(a-EYBu-5) @6
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where Be=(ag) (hf=2...q)
and =y
is a solution of —BE =, ] = (2ys, e ), @D
and 3-%—220‘,6‘6.
g
The solution of (2.7) is
b= E'iA_l (i=2.r9) o)
3
and = c;A—-‘e,'

which are simple functions of known quantities ¢, and A-, Now

sup‘/( ,Am) .sup(8+(l §) Ba-5)j
= {8+ inf(u—E)'Bu~E)-. @9
0
The problem is thus reduced to that of minimizing the gative quadratic form

Qw) = (@-EYB(-§)

with the restriction u20. If oy = (i, ... t,e) is the minimiziag vector, then the
optimum vector m is found from (2.4)

m = A1 CAv,
and the selection function is
ACA X, (2.10)
where Yo = (1, ... Ugq).
The correlation between y, and the best selection function (multiple regr
when there are no restrictions on other criterion variables is
Ry = 1/J(30,). @n)

With the restriction that the changes in mean values of other criterion variables are
10 be in specified directions if possible, or otherwise zero, the correlation between
 and the sclection function (2.10) reduces to

Ry = Ilon{8+ _m;: (u—E)Ba-B)}. @12

If the restriction is such that no change is desired in the mean values of other criterion
variables, a problem considered by Kempthorne and Nordskog (1959) and Tallis (1962),
the correlation is obtained by putting u==0 in (2.12) and is

Ry = 1{oy(8+E R,
It may be seen that Ry2 Ry2 Ry, (2.13)
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which implies that selective efficiency possibly i by lizi
that no change should occur in other criterion variables to changes in speuﬁed direc-
tions if possible.

The correlation coefficient between the index and the criterion variable y, (k# 1) is

oy
Tx A
This means that changes in the y,’s can easily be estimated and also illustrates that
whea v, = 0 no change in the expected value of y, will result from the selection.

3. DiscussioN oF SPECIAL CASES
The case ¢ = 2 is quite simple. The quadratic form (@—§)'B(0—§) reduces to
Ay
a.,(u, Sxe)- 0.0
If ¢; A~ 20, then the minimum value of (3.1) for non-negative &, is zero and the
multiple regression of y, on Xps oo Xp € A” ~! x, without the constant term, automatically

satisfies the desired restriction on yy. Il ¢{ A", <0, then the minimum is atained
when uy = 0 and by the procedure indicated in (2.10) the selection function is found to
be

At
e;A-lx—zA_,:c;A-lx, ItF)

which is a lincar combination of the multiple regression equations of y, and y, on
Xy, .. Xp. The square of the correlation between y, and the selection function (3.2) is

(A7)
qA 'c,—ﬁr (33

divided by o,,. The square of the multiple correlation between y, and x;,...,x,, is
¢; A~'c;f0,, and the reduction due to the resiriction on y,, when ¢f A-1c, <0, is given
by the second term ia (3.3).

The next practically important casc is that of ¢ = 3. The quadratic form to be
minimized is

Qlug,ty) = aaelity— £ + 2ty — €9) (1 — £2) + a1 — €)%,

where a;; and £; are as defined in (2.5) and (2.8). A number of cases arise depending
on the sigas of £y, &y ...

Case (i). Suppose that §,>0, £,>0. The minimum of Q is zero and the multiple
regression of y, on xy, ..., X, is the selection function.

Case (ii). Suppose that §,<0, £320. The minimum of Q is attained on the boun-
dary &y = 0. To determine the value of 1y, we solve the equation

do(.
%Q‘SL"‘H’) = ay{uy= §g) -y £y = 0,

obtaining 4= ‘;—:e,u,. 04
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If 0y f¢+0y3 £420, then the minimum value of Q is attained when uy =0 and uy
has the right-hand side value in (3.4). If a5 £+0y9 £5<0, then the minimum is
attained at uyy =0, uyy = 0. The selection function is determined as indicated in
(2.10). The case of £,20, § <0 is treated in a similar way.

Case (iii). Suppose that £,<0, £,<0. There are three possible pairs of values at
which the minimum might be attained:

9
=0, ==¢+&;
Uy g =2 b+

an
=2¢4 =0;
g Lty uw

Uy =0, uy=0.

Out of these we need consider only the pairs where both the coordinates are non-
negative and then choose that pair for which @ is a minimum.

When ¢ >3, the number of different cases to be considered is large. When cach
£,>0, the minimum of Q is zero. But in the other cases the algorithms developed for
general quadratic programming (Charnes and Cooper, 1961, pp. 682-687) may have
to be adopted. It may, however, be observed that by replacing v’ = (u,..“,uq) by
w =(w}....wd) in Q, the problem reduces to that of minimizing a quartic in
Wy, ..., Wy Without any restrictions. No great simplification seems to result by trans-
forming the problem in this way. As mentioned carlicr, the practically important
cases correspond 10 ¢ = 2 and 3 for which the solution is simple, as already indicated.
The selective efficiency may go down rapidly with increase in the value of g.

It is well known that a large number of statistical techni were first loped
for applications to biological problems. The present paper shows that the enlire new
field of programming problems, i.c. of optimization subject to linear inequalitics,
could have been developed for application to biological problems several years
carlier, soon after the concepts of correlation and regression were introduced.
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