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Abstract: For centain non-singularly estimable full-rank appropriately invariant problems of
linear inference in the setting of block designs, some complete classes of experiments have been
characterized through the relation bewween the relevant C-matrices and their g-inverses {of the
Moore-Penrose [ype) in regard 1o the specific invariance criterion discussed here. It follows that
for a *%-invariant non-singularly estimable full-rank problem, a complete class of experiments
Jormatly consisis only of ‘4-invariant designs.
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1. Introduction

The object of the present article is to combine the statistical concept of invariance
of linear inferential problems (Sinha (1970, 1971, 1972)) with the mathematical
aspects of generalized inverses (g-inverses) of matrices, in order to establish some
results on complete classes of experiments for inferring about certain invariant
linear inferential problems in block-design settings.

First, in Section 2, we intend to derive various results, mostly of mathematical in-
terest, relating to g-inverses and the specific invariance criterion, as applied to them.

Then, in Section 3, we would take up the statistical aspect of the problem and dis-
play some special results (involving the g-inverses) fitting into the context of analysis
of block designs. Our main aim is, however, to undertake, in Section 4, the problem
of exploring the relevance of the considerations of invariant g-inverse matrices in
the search for some complete classes of experiments for certain invariant problems
of linear inference in block-design settings.
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2, The invariance criterion

At the very outset, we refer 10 Rao and Mitra (1971) for the definitions ax
properties of g-inverses of matrices including, in particular, the Moore-Penrox
(M-P) g-inverse.

In Sinha (1970, 1971, 1972), the statistical concept of invariance was introducx
with respect 10 linear inferential problems. We just take out the mathematical aspea
of that concepl and apply here in defining invariant matrices in general terms.

Let A {(mx n) be a matrix of real (or complex) elements. To the 2 columns of ik
matrix 4, we associate n numbers, say, (1,2,...,7) and consider the symmetn
group S, of all possible n! permutations of these numbers. Similarly, we associater
numbers, (1,2, ..., m) to the m rows of A and consider S,,, the symmetric groupo!
all the m! permutations of these numbers. Members of S, will be denoted by i
letters @, 0y, 03, ... etc. Very often we will deal with matrix representations of the
permutations, like, Gy, Gy, Go,s - for members of §,, and G,,,G,I.GAI.... for
members of §,,. To unify the operations with these matrices, it will always be under
stood that a permutation matrix G, (G,) is an 71X n (m X m) matrix, representing the
permutation of the columns of the identity matrix [, (I,,) according to o (4). Thus,
G, =G,-1 = inverse permutation of ¢ and, similarly, G; = Gy-1.

We now introduce the following notion.

Defigition 2.1, The matrix A (m X n) is g-invariant (i.e. invariant with respect toth
permutation ¢ of its columns) if and only if there exists a permutation & (€§,,), It
be called the neutralizer of g, such that

G3AG,=A. @
Note 2.1. Suppose A is o,-invariant as well as oy-invariant. Then il may wé
happen that the same matrix G, satisfies G,}AG,,=A (i=1,2). The neutralizersol ¢,
and o, need not be different. We might write 8(c) for & to show its dependenceons
Note 2.2. A consequence of (2.1) is that

AG,=G,A; AG,=G;A:  GyAG,=A; 2

GlAG)=A; GjAGY=A; i=012...,
Immediately, we have the following result.
Theorem 2.1. = {0 | Gs,)AG, = A for some 3(a) € S,,} is a subgroup of S,

The proof is easy and hence omitted.

We are interested in examining the status of the g-inverses of the matrix At
garding this concept of invariance.
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Let A™ be any g-inverse of A. Observe that A~ is of order nxm so that we may
define g-invariance of A~ (for some d€S,) as the property of A” satisfying the
condition G,A”G, = A~ for some g€ S,. We might write (&) for a.

When A is square and non-singular, the relation G, A G, = A implies and is also im-
pliedby G;'A7H(G) ' =4, i.e. G;A™ Gy =A"" so that "4 is g-invariant” & “4~
is &-invariant”, ¢ and & being the neutralizers of each other. We want to investigate
how far this invariance property is retained by the g-inverses of A, in case A is
rectangular or square singular.

Towards this, we present the following results.

Theorem 2.2. Whenever the matrix A (m x n) is g-invariant for some g €S,, there
exisis at least one 8-invariant g-inverse of A, and further, there exists at least one
reflexive 3-invariant g-inverse of A (& being the neutralizer of ).

Proof. See Appendix.
The converse of Theorem 2.2 is embodied in the following.

Theorem 2.3. The property of d-invariance of an arbitrary g-inverse of A does not
necessarily imply o-invariance of A. Nor the 3-invariance of an arbitrary reflexive
g-inverse of A implies a-invariance of A (here o s the neutralizer of 8).

Proof. Through counterexamples.

However, with the Moore-Penrose g-inverse A* (vide Rao and Mitra (1971)), the
results are quite in order as we can see from the following theorem.

Theorem 2.4, Whenever A is a-invariant, the M-P g-inverse A" is &-invariant and
vice versa (here a and & are the neutralizers of each other).

Proof. It can be verified easily that (4G,)* =G,A4* and (G,A)* =A*G,. Hence
whencver A is o-invariant with ¢ as the neutralizer, from (2.2), we have AG, =
GyA, i.e. (AG,)* =(G,A)*, i.e. G,A*=A*G,, i.e. G,A*G,=A*. This proves
¢-invariance of A* with o as its neutralizer. Changing the role of ¢ and & and re-
membering that (4*)* = A, we have ihat G,A* G, =A" implies G,AG, = A. This
proves the converse. Hence the theorem.

Corollary 2.1. Lef
J 9={0|0€S,, G;AG,=A for some @€S,,)
an
F={0|0€Sn G,A*Gy=A* for some oeS,).

Thenoe 9 » a€ 9 (o and & being the neutralizers of each other).
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In the next section, we specialize to the setting of block designs and display similar
resuits involving the C-matrices.

3. Specific results for C-matrices

In the setting of block designs (underlying linear models) with, for example, one
way heterogeneity, we have to deal with matrices, simply known as C-matrices, of
the following type:

Cloxv)=ré- Nk~*N’ [eAl)
where N(v x b) is the incidence matrix of the design;
Ni=(r,n,...,n),  N1=(k, k. k)

(1 being a column vector of 1's of suitable order); r; = number of replications of the
ith variety, k, = jth block size, r®=Diag(r), r3,...,7,) and k~4=(k*)", k=
Diag(k), ky, ..., kp). The C-matrix has the following properties in regard fo s
elements: C;, 20, 1sisy; C; <0, 1 sijsy, E; C;=0, 1si<v. Cis symmetrc
p.s.d. of rank at the most u—1. When rank (C) = v~ 1, we call C a connected mauia
(and the corresponding design is called a connected design). All treatment contrasts
are estimable if and only if the design is connected. Althroughout, it will be assume
that the design is connected. An immediate consequence of this is that C,, >0 foralli
Hence we derive the following basic result.

Proposition. If C is g-invariant (according to Definition 2.1), then, necessarily,
& =0 (i.e. g itself Is ils neutralizer).

One may easily provide a proof of this proposition by considering a generd
representation of ¢ in the form of a product of disjoint cyclic permutations and -
membering that only the diagonal elements of the C-matrix are positive and the rest
are all negative or zeroes.

Note 3.1. It must be noted that the g-inverses of the C-matrices need not lend then-
selves 10 such algebraic properties simply because a g-inverse of a C-matrix may no:
even be symmetric.

The following modified versions of the Theorems of section 2 may easily be ver:-
fied in this context:

Theorem 3.1. The class 4 = {0 | 0€S,, G,CG, = C} forms a subgroup of S,
Theorem 3.2. Whenever the matrix C is g-invariant (for some g € S,), there exiss

at least one o-invariant g-inverse of C, and, further, there exisis at least on
reflexive g-invariant g-inverse of C.,
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Theorem 3.3. The property of o-invariance of an arbitrary g-inverse of C does not
necessarily imply o-invariance of C. Nor the a-invarlance of an arbitrary reflexive
g-inverse of C implies g-invariance of C.

Theorem 3.4, Whenever C is o-invariant, the Moore-Penrose g-inverse C* of C Is
also a-invariant and vice versa.

Finally, we also have the following corollary.

Corollary 3.1. If
4={0|0eS,, G,CG,=C} and 9*={a|aeS,, G,C*G,=C"},
then 9=9°*.

Note 3.2. Theorem 3.4 essentially points out the fact that the study of properties of
invariance of C-matrices (in the sense defined here) can be brought down to an
cquivalent study of such properties of their g-inverses of the Moore-Penrose type
(C*-matrices). In the next section, we intend to explore the relevance of this concept
of invariant C*-matrices (and the demonstrated implication of invariance of the
corresponding C-matrices) in the formal determination of some complete classes of
experiments for some suitably chosen invariant problems of linear inference.

4, fant problems of linear and some classes of experiments

In this section, we intend to apply the result reflected by Corollary 3.1 in the
derivation of a formal general result on some complete classes of experiments for
certain suitably chosen invariant linear inferential problems. The key papers for the
present discussion are (a) a series of classical papers of the late Professor Kiefer
(1958, 1959, 1974, 1975) in which, among other things, he has developed various
optimality criteria and established a striking result on universal optimality of the
BIBD’s (and more generally of the BBD's) in the setting of block designs with one-
way heterogeneity; (b) those of Sinha (1970, 1971, 1972, 1975) in which optimality
of the BIBD’s has been established for certain suitably chosen invariant problems of
linear inference.

[tis for the type of problems treated in Sinha with respect to various optimality
eriteria formulated by Kicfer that we want 10 construct formaily certain complete
classes of experiments.

Consider the following non-singular linear inferential problem:

. plix1)=L{ixv)r{ux)), L1=0,rank(l)=i. @.n

Suppose n is ¥-invariant for some subgroup ¢ of S, in the sense that forevery e 9,
there exists one (o) € S; such that

GyLG,=L (andhence) G,LG,=L. 4.2)
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For given b, v and k, let now & be the class of all possible designs which provide
inference on n (in the sense of estimability of #7). Using the design de #, we get

As=LC7 Qy

Qy = vector of ‘adjusted treatment totals’ based on observations underd.

where

Further, D(f;) = 0X(LC; L’) so that the information matrix is given by
S=/aLesLy™.
Let now ¢ (€ ¥) modify d to d, by providing N, (the incidence matrix under d,) =

G, Ny where Ny(ux b) is the incidence matrix under d. Clearly, then, Cy, =G, (4G,
and, further,

C=G,C}G,.

Hence, because of (4.2), we derive

oy =(LCILY" = {(G,LG,) C2 (G, L'Gy)}™!
= [Go{L(G,C3 G)L'} GoT™' = G,(LCLL) G,
That is,
Jay = (1/0Y)- (LCLLY " = (G5 f4Go) @3

whatever g€ 4 with 3(g) as its neutralizer.

Speaking in terms of the C-matrices, define €= {C, | de %} and extend #'10 € a5
€= {C(vxv)| C is real psd, C1=0}. Consider now the *4-invariant’ subclass ¢ of
¢ defined as #= {Cluxv) | Ce ¥, C is Y-invariant, i.e. G;CG, =C Voe's}. (The
proof of Theorem 2.2 indicates how one can get into ¥-invariant matrices starting
with arbitrary matrices.) Restricting to the class of non-singularly estimable full
rank 9-invariant problems, i.e. to problems x as in (4.1) with i = v~1 and satisfying
(4.2), we deduce below a Complete Class Theorem which states that for every
member Cye ¢ there is a better member C,vef' with respect to any convex sym-
metric criterion for inferring on n.

We proceed as follows. Define simply

Jio =,§, Joo/ 1. “4

Then it is known (Kiefer (1975)) that Cy, is better than C, with respect to any conver
symmetric criterion (which includes the commonly used A-, D- and E-optimality
criteria) where Cy, is defined through

Joo=(1/6)LCHLY, Cglsymmetric)1=0. (49

It is easy to show the existence of Cy, satisfying (4.5) in general terms. However, i
becomes unique whenever isv~1.
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We show below that Cy, is -invariant, i.e.
G;CyGy=Cy4y VoEY.
For this, in view of Corollary 3.1, it is enough to establish the validity of
G,C4G,=C4 Voed. (4.6)
Towards this, we first take up the following lemma.
Lemma 4.1, For every 0 € 9, G, 4,Gy = fay where 8 satisfies G,LG,=L.
Proof. Let o be a particular member of 4 with &° as its neutralizer so that we have
GyeLG,e = L. Then, of course, a*9 = ¢ and, further, 82°=a2*since forany ge 9,
L=GyLG, = L=GyG4LG,G,e
= L=(GyGys) L(GyGys)=GipyrLGyge.
Hence, using (4.4), for every g*€ ¥,
G JuoGoo = E (G4+G; §4G5Gys)/ #9 = ; (Gpas Jy G}/ #Y
=°Z.:_ (Gr- JsGrg}/ #9 = & (Gy J4Go) #9 = Joy.

Hence the lemma.
Note 4.1, Observe that this result holds in general terms whatever isv—1.
We establish (4.6) through the following lemma.

Lemma 4.2, Whenever the problem = is non-singularly estimable '$-invariant and
of full renk, (4.6) holds.

Proof. By Lemma 1, f, is O-invariant for every g€ 9. Thus, if G;LG, =L, then
G Juso = Jior 1-0. Ga(LCHL)Gy =LC L, Lt

L(G,C4G, - Cip)L'=0 whateveroe . @.m
Observe that L1=0 and further that L is of order (v—1)xv and of rank v—1.
Hence, L can be completed to a full rank square matrix by adjoining to it the row
wector I, Since (G, Cy, G, — C4)1=0 (recall (4.5)), (4.7) is equivalent to

(fj)(G;C,;G, -CHW|H=0 whateveroe 9 (4.8)
which leads directly to (4.6).

Nete 4.2. The crucial point in getting into this result is, of course, the observation



178 B.X. Sinka / Compiere classes of experiments

made in the course of the demonstration of this lemma which puts (4.7) and (4.8)s
equivalent. For i<v—1, {L’| 1) is not a square matrix even though (4.7) and (45)
are still equivalent. Hence the argument breaks down and (4.6) may not hold neces
sarily.

Note 4.3. Thus the invariance considerations developed here apply only to noe
singularly estimable full-rank problems. See Sinha (1970) for other types of singu
larly estimable full-rank problems; see also Roy (1958) in this context.

Note 4.4. The result derived here does not, however, lead to the optimum designat
any rate; it only indicates a way to look for the same within a smaller class of
appropriately invariant C-matrices for such invariant problems. One may wonder
regarding the arbitrariness of the members of the subclass # in general, However, i
must be noted that they are not too arbitrary; each Cy, is derived from a particuly
C4 which has a definite form. Hence, Cy, is not just any matrix in ¢ with a %
invariant form, For a specific optimality criterion, the matrices Cy, may be com-
pared without much difficulty. In some cases, such a consideration nicely leads o
the optimum design (the best among the Cy-matrices but in ¢) as the followin
results demonstrate:

Result 1 (Sinka, 1970, 1972). Within the cless of binary, proper, equireplicate con.
nected designs for given b, v and k, a BIBD, if it exists, is optimal (with respectio
any convex symmelric criterion) for any non-singularly estimable full-rank probien
Invariant under S, \(i) (the symmetric subgroup of (v-1)! permutations of all ik
treatmentis except for the treatment i’).

Result 2 (Sinha, 1972). Within the class of binary, proper, connected designs with:,
(predetermined) as the number of replications of the first treatment, an [/GBBD
(Inter- and Intra-Group Balanced Block Design) A(b, v, ny, 7', k,ny =1, ny=v-1,4;, ).
if it exists, is optimal (with respect to any convex symmetric criterion) for any nor
singularly estimable full-rank problem invariant under S,_ (1).

We end up this section by citing the following example of a non-trivial optimaliy
result as a of the lete-class result di d here.

Example. For estimating n((v—1)x1)=(t;— 13, t; — 13, ..., 7, — 7,.)’ for given b=
k=3 and v=9, the unigue A-optimum design within the class of binary proper cor
nected designs is an IIGBBD with the following parameters: b=40, k=3, v=},
n=32, =11, =8, 1,=2. The details of the calculations are to be found e
where (Sinha (1980)). It is not difficult to construct this design practically, (&
Sinha and Sinha (1969) in this context.)
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§, Concluding remarks

(a) Much yet, however, remains as undone towards finding optimum designs
even for invariant problems simply because the ‘no-design-related’ subclass Z~¢
may contain the ‘best' C-matrix and, quently, may li the whole
search.

(b) Almost a decade ago, while the author was developing invariance considera-
tions in the study of optimal designs, Professor S.K. Chatterjee of the Department
of Statistics, Calcutta University initiated a similar consideration 1o the author con-
cerning the role of invariance towards attaining simplicity in the analysis of block
designs. The author persued on the latter topic only recently (Sinha (1982)); how-
ever, he always felt that invariance considerations on the C*-matrices could be
profitably used elsewhere also. It is only recently that those ideas are reflected
through the general resuits and the specific results on g-inverses incorporated in this
article. The author records his deep gratitude to Professor Chatterjee.

(c) Simplicity criterion in the analysis of block designs has taken a definite shape
by now with the work initiated by Tocher in as early as 1952 and persued only in
recent years by Calinski (1971) and Saha (1976) among others (detailed references
are omitted here). However, invariance considerations in this connection have only
been recently taken up (Sinha (1982)). Another look to the existing simplicity
criterion has also been reported by the author (Saha and Sinha (1981)).

(d} An earlier draft of this article was presented (by title) at the 'Research Con-
ference on Variance Components, g-Inverses and Their Applications’ under the title
‘Structurally Invariant g-Inverse Matrices and Their Uses in the Search for Optimal
Designs’, held at the Department of Statistics of Chio State University in June 1979.

6. Appendix

Proof of Theorem 2.2. Let G(n x m) satisfy AGA =A. From G, we construct
GM=GYGG), i=0,1,2,...,p-1, (6.1)
where p = |.c.m. (order of g, order of &). Using (2.2), one can now show
AGD4=A, i=0,1,2,...,p-1, 6.2)
s0 that every G is a g-inverse of A. Now we form

G*=Y G"p (6.3)
[

and claim that G is a @-invariant g-inverse of A with & as its neutralizer. The veri-
fication is left to the reader. The most general form of such a &-invariant g-inverse
of A would be given by

A =;f— L G/(G+U-GAUAG)G;. (6.9)
i
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Here U(n x m) is an arbitrary matrix (Rao and Mitra (1971)). It is now enough to fom
G*=G*AG"* (6%

with G* as in (6.3), to prove the existence of a reflexive #-invariant g-inverse of 4
with g as its neutralizer. And, yet, the most general form would be given by

G"=ATAA; 64

where A (j=1,2) are matrices as in (6.4).
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