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In the general Guuss-Murkotl model (Y, XB, o'V), when V is singular, there
exist lincar functions of Y which vanish with probability ) imposing some
restrictions on Y us well as on the unknown 8. In all eurlicr work on lincar estima.
tion, rer of best-li unbiased esti (BLUE's) arc abtuned
under the assumption: “L'Y 1s unbiased for Xp = L'X — X" Such  condition
1s not, however, necessary. The present puper provides all possible representa.
tions of the BLUE's some of which violute the condition L'X = X. Representa.
tions of V for given classes of BLUE's are ulso obtained.

|. INTRODUCTION

Let us consider the general Gauss—Markoff Model (GGM),
(Y, Xp. 0%V) (LY

where Y is a vector of random variables, i(Y) = XB and D(Y) = o*V. The
operators E and D stand for expectation and dispersion respectively. ‘The param-
cters P and o® are unknown. The matrices X and V are known, but X nuy be
deficient in rank implying that only certain linear combinations of 8 are estimable
(or identifiable) and V may be singular implying that the random variables are
lincarly dependent. 1n all earlier work of the author, as well as of the other
writers on the subject, the BLUE (Best Linear Unbiased Estimator) of a param-
etric function p'B is defined as a lincar function L'Y where L is such that
L'’X = p’ and L'VL is a minimum. It has been pointed out by the author (9],
that the condition L'X = p’ is not necessary for unbiasedness when V is singular.
This is due to the existence of lincar functions of Y which are zero with prob-
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BEST LINEAR UNBIASED ESTIMATORS 277

ability | that can be added to any estimator without altering its value but violating
the condition L'X = p’. The existence of such zero functions was recognized
by various writers (see, for instance Goldman and Zelen [1] who were the first
to consider the case of singular V), but the consequences have not been followed
up, quite rightly perhaps. However, as the author has shown [9], the earlier
approaches which implicitly involved the necessity of the condition LX = p’
do provide BLUE's although it does not answer the wider problem of providing
all representations of the BLUE's, which 1s of some theorctical interest. The
object of the present paper is to consider this wider problem, and also to provide
more rigorous statements of theorems proved in earlier work on the subject.

2. Tue GGM MobEL

The following notations are used.

A" = Transposc of A. R(A) = Rank of A. /#(A) is the lincar space generated
by the columns of A. A* is any matrix of maximum rank such that A'A* = 0.
A-isag-inverse of A. Matrices A and B are said to be disjoint if the intersection
of #(A) and #(B) consists of the null vector only. (A : B) is a partitioned
matrix with A and B as the partitions.

Some results in matrix algebra used in the paper are stated below.

A(2.1). Let V be an nnd (nonnegative definite) matrix, and X be any matrix
with the same number of rows as in V. Then X and VZ, where Z = X* are
disjoint.

A(2.2). One representation of X* is

I-X)yX (2.1)
for any choice of the g-inverse.

A(2.3). The projection operator Py on .#(X) has the representation

Py = X(X'AX)y'X'A 2.2)
where A is the pd (positive definite) matrix defining the inner product of vectors
(x.y) =y'ax.

A(2.4). 1fT-is ag-inverse of T then

TT-C =C « 4(C) C.4(T) (2.3)

For further results on g-inverse reference may be made to Rao and Mitra [11].
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A(2.5). LetVbeannnd matrixand U beany matrix such that T = V + XUX’
has the same rank as (V : X). Further let Z = X*. Then

MV X) = AV X) = MT), (24

HA[VI)] =.#4T-X:I-TT). (2.5

The result (2.4) is easily proved. To establish (2.5), consider a vector A such
that

AT-X=0, AI-TT)=0. (2.6)

AT-X =0 = AT = wZ' for some choice of vector g. Substituting in
A = AT-T,we have A" = pZ’T = wZ'V. Henee A'(VZ)! 0

MVZ)] CH(T-X 1= T-T). @

To prove the other way, consider A(VZ) =0 = X' - wZV wZT.
Then AT-X = pZTT X =pwZX =0 using (23), TT-X . X since
H(X)CH(T). Also (I — T-T) = pZT(I — T-T) = 0. Thus

AVZ)]2MT-X:1-T-T) (28)
and the praposition is proved.

A(2.6). The columns of the matrices (X: VZ)*, Z(Z'V)* and K(K'X)-
where K = V* gencrate the same spacc.

We state and prove a number of results concerning the GGM (General
Gauss-Markoff) Model (1.1). It may be noted [8] that the GGl model includes
the case of restrictions on parameters.

Lemma 2.1, Let (Y, XB, a?V) be @ GGM model. Then
Ye #(V:X) with probability | 2.9
where (V : X) denotes the partitioned matrix.

The result (2.9) follows, since L'(V : X) = 0 = E(L'Y) = Oand F(L'Y) 0,
i.e., L'Y = 0 with probability |. We say the model (Y, X8, ¢*V) is consistent if
LV=0LX=0=LY=0

Lemma 2.1 specifies that Y belongs to the space generated by the columns
of V and X, which is the only statement that can be made when Y is nat observed.
However, when we have an observation on Y we have the necessary information
to determine the subspace of AV : X) to which the random variable Y helongs.
The answer is given in Lemma 2.2,
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Lemnia 2.2, Let K = VL, Then

K'Y =d with probability |, (2.10)
KXp =d, (2.11)
where d is a constant vector.

The results (2.10) and (2.11) follow since K'V = 0 = DK'Y) =0 = K'Y =
E(K'Y) with probability ], where D denotes the dispersion and E the expectation
operators, The cxpressions (2.10) and (2.11) are in the nature of restrictions on
the random variable Y and the unknown parameter . However, they arc known
only when we have an observation on Y. If V is n x » matrix, then R(K) =
n— R(V).

Lesva 2.3. Let N = Kd*. Then

NY =0 with probability 1, (2.12)
NXp =0. (2.13)

The results (2.12) and (2.13) are consequences of (2.10) and (2.11). They
show that the random variable Y is, in fact, confined to a subspace and that
the singularity of V induces some natural restrictions on the parameter . It may
be seen that R(N) = n — R(V) — | ifd % 0 and R(N) = n — R(V)ifd = 0.

Lemma 24, Let S = (X'N). Then
Ye#(V:S) (2.14)
The result (2.14) follows, since L'V =0, L'XS =0 = E(L'Y) =0,
FL'Y) = 0 = L'Y = 0. Thus the knowledge of an observation on Y enables

us to specify the particular subspace of (2.9) to which the random variable
belongs.

Lenma 2.5, If L'Y is unbiased for p'B, then it is necessary and sufficient that
XL—pe#(XN)-SXL =S8p {2.15)

where S = (X'N)* or, there exists a vector A such that
X'L— Ny =p. (2.16)

If E(L'Y) = p'®, then L'XB = p'B when B is subject to N'Xg =0, i.e.,

683/3/3-3
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there exists a vector A such that L'X — p = NMN'X which proves (2.15) and
(2.16). Conversely (2.16) = L'Xp = pp, ic., Ly is unblascd for p'p.

We note that the usual condition of ployed in all earlier work
on linear estimation is X'L = p, which is only sufficient.

Levma 2.6, The condition X'L = p is necessary and sufficient for L'Y 1o be
unbiased for p'B iff NX = 0.

The result follows from (2.16). It may be noted that N'X can vanish without ¥
being nonsingular, However, R(V : X) can utmost be R(V) + I.

Lenota 2.7, LY is unbiased for zero iff
Le#(N:Z) =.#((XS)"] 217

where Z = X* and S = (X'N)*

The condition E(L'Y) = 0 = that there exists a A such that L'X =
AN'X = (2.17). The converse easily follows.

From the results of Lemmas 2.4-2.7, it follows that the linear function LY
is unbiased for the whole set of parametric functions (L'X + A'N'X)8 where
A is arbitrary, which reduces to a unique function if N'X = 0. The set of

vectors {p} such that E(L'Y) = p'B for given L is represented by #,, or more
explicitly by Z,(V).

Lemma 2.8, If LY is an unbiased estimator of p'B, then there exists a vector M
such that

L'Y = MY with probability |,

218
MX = p. @1
Further if A'Y is unbiased for zero, then there exists a vector B such that
A'X = B'Y with probability 1,
(2.19)

BX =0

From (2.16), p = X'(L — N2). Then choose M = L — N&, which estab-
lishes (2.18). Similarly (2.19) is proved.

Lemma 2.7 is important. It establishes that to obtain the BLUE of p'g, we
need only determine L such that L'VL is 2 minimum subject to L'X =p,
although 1t is not a necessary condition. Such an approach does provide a formula
for computing the BLUE of an estimable function p’B, which was the object of
all earlier work, but does not necessarily give all representations of the BLUE.



BEST LINEAR UNBIABED ESTIMATORS 281

We give a wider definition of the BLUE and denote it by BLUE(W), retaining
the abbreviation BLUE for the traditional type investigated in all earlier work.

DesmioN . LY is said to be the BLUE(W) of p'B iff L'VL is 2 minimum
subject to the condition (X'L — p) € .#(X'N).

Deriximiony 2. L'Y is said to be the BLUE of p'@ iff L'VL is a minimum
subject to the condition X'L = p.

We note that if LY and L,’Y are two representations of the BLUE or
BLUE(W) of the same parametric function, then (L, —~ LYY =0 with
probability I; as the minimum variance linear unbiased estimator is unique.

The set of all vectors L giving the BLUE of p'@ is represented by £,V or
simply by &, when V is understood, and the set giving the BLUE(W)'s of p'g
by LY(W) or simply by £,(W). Also £V stands for the set of all vectors
providing BLUE's or BLUE(W)'s of some parametric function or other.

3. REPRESENTATIONS OF BLUE'S AND BLUE (H)'s

The following theorem, which has been repeatedly used in all carlier work
of the author since 1945, is basic in the theory of linear estimation.

Tueorem 3.1, The linear function L'Y is the BLUE(W) of p'B, (pe 2,) iff

LVZ =10 (B))]
where Z = X* provided o* > 0.

The tesult (3.1) follows by applying Theorem |, Section 52.2 in Chapter § of
Rao [5): a statistic is the minimum variance unbiased estimator of its expected
value if it is uncorrelated with statistics unbiased for zero. The origin of the
theorem quoted in (5] can be traced to Fisher [12] who cstablished it in the
context of consistency and efficiency. The proof is the same for unbiasedness
and minimum variance.

Using (2.17), M'Y is unbiased for zero iff M = Za + N& for some « and §.
Then

cov(L'Y, M'Y) = o°L'VM
= o’L'V(Za + N§) = ¢'L'VZa = 0. (3.2)
Since (3.2) holds for all @, we must have (3.1) if 6* > 0.

Note 1. The basic result (3.1) used in all earlier work is the same whether
we are searching for a BLUE or BLUE(W).
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Note 2. A necessary and sufficient condition for a set of lincar functions C'y
to be BLUE(W)'s is
CVZ =0, 33

which can be written in the alternative forms
H(C)C.MVZ)  or H(VC)C.#(X) (3.4
We shall use (3.3) in obtaining representations of C given V and of V given C.

COROLLARY 3.2. Let £V denote the set of vectors {L} such that L'Y js the
BLUE(W) of some parametric function. Then

Y = M(V2)') (3.5
=.#TX:1-TT) (3.6)
where T = (V + XUX'), U is such that R(T) = R(V : X), and T~ is any
g-inverse.
The result (3.5) follows from (3.1) and the result (3.6) from the equivalence
result established in (2.5).

CororLary 3.3 L'Yisthe BLUE of p'Biff

XL=p, ZVL=0 (tY)
and is the BLUE(W) of p' iff
SXL =Sp, ZVL=0 (38)

where S = (X'N)*.

CoroLLary 3.4, The BLUE of p'P has a unique representation iff R(V : X) = n,
the order of V. The BLUE(W) of p'P has a unique representation iff XN 0in
addition to R(V : X) = n.

The results follow from these of Corollary 3.1 using the result R(VZ : X) =
R(V:X), and in fact AH(VZ:X) = .#(V:X), which is casily established.
It is interesting to note that unique representations of BLUE's are possible even
when V is singular.

CoroLLARY 3.5. Let &, denote the set of all vectors L such that L'Y is the
BLUE of p'B. Then L € %, can be written in tico alternate forms

L =Ly + Z(Z'V)*3, (39)

=TXXTX)p+(I-TTy (3.10)
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where Ly is a particuler L€ %,, T and T~ are as defined in Corollary 3.2, and
A, v are arbitrary.

We observe that L satisfies Egs. (3.7), X'L = p, Z'VL = 0, a general solution
of which can be written in the forms (3.9) and (3.10) using the result (2.5).

Note 1. The BLUE of p'B, using the formula (3.10) is
YT-XXT-X)p (3.11)
observing that the second term Y'(I ~ T-T)v = 0 with probability | since,
by Lemma 2.1, Y e #(V:X) = #(T). The expression (3.11) can also be
written as
PX(TYX)yX(T)-¥ (3.12)
which is derived as a suitably defined least-squares estimator in [8) using an
asymmetric matrix T and in [10] using 2 symmetric matrix T.

Note 2. 1f
b o -6 &) oo
is one choice of a g-inverse, then L in (3.9) can also be written as
L=Cp+(I-CV-CX)a +CXx, (3.14)

where A, A, are arbitrary, and C,p corresponds to a particular solution, The
equivalence of (3.9) and (3.14) is easily established using the definition of a
generalized inverse. Further the BLUE of p'B is simply p'C,'Y, since the contri-
bution by the other terms in (3.14) in zero, which is derived in [8] as the inverse
partitioned matrix (IPM) approach to lincar estimation.

Note 3. "The representations (3.9) and (3.10) consist of two parts
L=L+L, (3.19)
where L'V = 0, L;’X =0 = L,'Y = 0 with probability 1, and LyX = p'.
CoroLLARY 3.6. Let (W) denote the set of vectors L such that L'Y is the
BLUE(W) of p'B. Then L € Z(W) has the representation
L=L+L +Ng (.16)

where Ly and L, are the same as in (3.9) or (3.10), N is as defined in (2.12) and u
is arbitrary.
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The set (3.16) is precisely the sct of all solutions of Eqs. (3.8), SX'L - 8p,
Z'VL = 0, defining the BLUE(W) of p'p.

Note that in (3.16), L = Ly + L, + L,, where Ly’Y = 0 with probability |
and LyX is not necessarily 2¢ro, LY = 0 with probability | and L;’X =0,
and LyX = p’. The sets of solutions (3.9) or (3.10) and (3.16) are the same if
NX=0

CoROLLARY 3.7.  The set of all matrices {C} such that C'Y is the BLUE of X
is given by
C=I+2ZA (3.17)
where A is an arbitrary solution of —Z'V = Z'VZA, or

C=Cy+ZZV)IM,

(3.18)
= Co+(V: Xy M,
there C, is @ particular solution and M is arbitrary, or
C=TXXTX)yX +1-TT)F. (3.19)
where F is arbitrary, T and T~ being as defined in (3.10).
IfC'Y is the BLUE of X8, then C satisfies the equations
XC=X
(3.20)
ZVC =0

the general solution of which can be represented in the alternative forms
mentioned in the theorem.

CoroLLARY 3.8. The set of all matrices {C} such that C'Y is the BLUE(Ii") of
X is obtained by adding NB, where B is arbitrary, to any of the expressions (3.17),
(3.18) or (3.19).

The result of Corollary 3.8 is easily established.

Note 1. The equation Z'VZA = —Z'V (of Corollary 3.7) admits solutions
for A and a particular solution is

A=—(ZVIyZV, (3:21)
so that a particular choice C, in (3.18) is, using (3.17),
1—-Z(ZVZIyZ'V. (3.22)
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Then the BLUE of XP can be written ss
(L — VZVZ)Z)Y. (3.23)

We have also the alternative choice provided by (3.19)
XX{(T)X)X(T)Y. (3.29)

The multiplying matrices in (3.23) and (3.24) are cqual when the columns of X
and VZ span the whole space, thus providing an interesting identity used in an
earlier publication of the author [6]. The expressions (3.23) and (3.24) have the
same value although the multiplying matrices {of Y) are not the same.

Note 2. Forany Ain(3.17)
VC =V + VZA = A'Z'VIZA, (3.25)

50 that VC is symmetric. But C’ is not idempotent unless A is chosen such that
R(C) = R(X) as shown in Theorem 5.1 of [8). Then we may ask for solutions
of C satisfying the equations

R(C) = R(X),
XC =X, (3.25)
ZVC =0.

Any solution of (3.25) is of the form C = C, + BX' where

Co = (TTXX(T)YX)X, (3.26)

and B is a solution of
TBX' =0, (327

or BX' is of the form
(I1—-T-T)AX', (3.28)

where A is arbitrary. Thus a general solution of (3.25) is the sum of {3.26) and
(3.28), providing a characterization of the BLUE of X@ in the restricted class of
estimators C'Y with a minimum rank for C.

We can also characterize the matrix C' of Corollary 3.7 s 2 projection operator
in an extended sense.

Derinrrion.  Let U and W be two matrices such that 4(U) and A(W) are
disjoint subspaces. Then Y €. #(U : W) has the unique decomposition ¥ =
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Y, + Y4, Y, €.4(U) and Y, € .#(W). Then P is said to be a projector on.#(U)
along A(W) iff PY = Y, for all Y e .#(U : W).
It is easy to see that P is a projector on .#(U) along .#/(W) iff

PU=U, PW-=0 (329

Let G' = W*. Then a general solution for P iz of the form P = KG where K
is any solution of KGU = U. One choice of P is
P = UGU)G, (3.30)

which is similar to the representation given in [11].
In general, P satisfying (3.29) need not be indempotent, although such choees
exist as in (3.30).

CoroLLarY 39. C'Y is the BLUE of XP iff C is a projector on . #(X) along
M(VZ) in the sense of the above definition.

The corollary provides us with another representation of C' in addition to
(3.17-3.19), through the formula (3.30). If G* = (VZ), then

C =KG (.31
where K is any solution of KGX = X, and a particular choice is
C' = X(GX)-G. (3.3

The formula (3.32) provides well known answers in particular cases, Thus,
when V = I, C' = X(X'X) X' and when | V1 # 0, C = X(X'V-'X) X'V,

4. REPRESENTATION OF V FOR GIVEN EstimaToRs

In Section 3, we ined the problem of obtaining best linear unbiased
estimators when V is given. Now we consider the converse problem of deter-
mining V given a class of estimators. First we prove an algebraic lemma, which
plays a key role in our study.

Lemma 4.1, Let V be an nnd matrix satisfying the equations
CVZ=0, VK=0 (0

where C,Z and K are given. If D = (C : K)* and X(=Z*) are disjoint then the
general nnd solution of (4.1} is of the form

V =DUU,D’ + XIU,U, T'X, @y
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where T = (X'K), and U, , U, are arbitrary.
First we show that
A(V)C 4D : XT). (43
Let A be such that A'D = 0, AXI = 0. Then A’D =0 > A’ = p’'C' 4+ vK’
for some choice of vectors p and v giving
NXT =0 = WCXT = 0. (44)
Ao CVZ =0 =CV =BX' = CVK = BXK =0 = B = AI". Then
CVC = BX'C = ATXC
CVCu = A'X'Cu = 0 using (d.4)
S WCV=0=2V
which proves (4.3).
Since Vis nnd, V = FF’ where F = DU, + XTU, . Then

V = (DU, + XTU,)(DU, + XTU,y. @5

The desired repi ion (4.2) is obtained if XrU,U,'D’ = 0. Using the
condition F'VZ = 0 where F = (C:K), we have from (4.5)

FXIU,U,D'Z = 0 (4.6)
= FXIU,U;D’ = MX’' = FXTU,U,'D’' = 0 since X and D are disjoint.

Further FXTU,U,'D’ = 0 = XTU,U,'D’ = DG = XTrU,U,'D’ = 0, since D
and X are disjoint, The result (4.2) is proved.

CoroLLARY 4.1. LetD = C* and X = Z* be disjoint. Then the nnd solutions
of C'VZ = 0 are of the form

vV =DUU/D’ + XU,U, X’ (4.7
where U, and U, are arbitrary.

The result (4.7) is a special case of (4.2) obtained by setting K = 0. It may be
noted that the result (4.2) is true without the assumption that the columns of D
and XT span the entire space, and {4.7) is true without the assumption that the
columns of D and X span the entire space.

Tueorem 4.1. Let (Y, XB, 6*V) be a GGM model where V is subject to the
condition VK = 0 for given K. Further let C'Y be the BLUE's of estimable para-
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metric functions P', where C'X = P’ and R(P) = R(X). Then it is necessary and
sufficient that V is of the form

V =DAD' + XTA,X’, (4.8)
where D = (C : K)*, P = (X'K)*, and A, and A, are nnd matrices.

The result {4.8) follows from Lemma 4.1, if it can be established that D and X
are disjoint. Since C'Y is the BLUE of P8, C'X = P’ and C'VZ = 0 where
Z = X4 Also

CX =P, RP)=RX)=>X=AP (for some A}, 4.9)
Now let Da = Xb # 0.
Da=Xb=0=CDa=CXb="Pb,
Pb=0= AP'b=0=Xb,
which is a contradiction, i.e., D and X are disjoint. It is casy to sce that if Vis
of the form (4.8), then C'Y is the BLUE of P'B.

Note 1. 1f K =0, the necessary and sufficient condition (4.8) reduces to
V=DAD + XaX (4.10)

where D = CL The result (4.10) was established by Mitra and Moore [4).
The more general result (4.8) provides the class of dispersion matrices associated
with random vectors Y such that K'Y = constant with probability 1.

Note 2. Let C = X. Then it is necessary and sufficient that
V=XU,U/X 4 ZU,U,; 2" = XA X' + ZA,Z° 1

where A, and A, are nnd matrices, which includes the case V = L. The repre-
sentation (4.11) which arises in a natural way in growth studies [2, |3] was first
presented at the Fifth Berkeley Symposium in 1965, in plete generality, as
an answer to the specific question: what is the class of dispersion matrices for
which the sxmple least-squares estimators arc aptimum (sec {7])? The work on
of V was d and ded to more general cases by
Rao [8], Mitra and Rao [3], Rac and Mitra [11], and Mitra and Moore [4].

Tueorem 4.2. Let oV and oV be two alternative choices of D(Y) in the
GGM model. If every representation C'Y of the BLUE of XP under V, is also the
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BLUE of X under V, then the following necessary and sufficient conditions are
equivalent:
(i) A(VZ)C A(V,Z), (4.12)
(i) ¥V =XaX + VZAZY,, (4.13)
where Z = X and A, A, are and matrices.

It is shown in Corollary 3.7 that if C'Y is the BLUE of X@ under V,, then
XC=X. ZVC=0 (4.14)
IfC’Y is akso the BLUE under V, then Z'VC = 0. The theorem demands that
XC=X, ZVCL=0=2ZVC=0 {4.15)

for which it is necessary and sufficient that
ZVV ) =0 = . #(VZ) C.#(V,2), {4.16)

which is the condition (i). Since Z'V(V,Z)! = 0, to establish the representation
(i) using Lemmad. 1, it is enough to show that X(= Z') and V,Z arc disjoint,
which is trivially true. Of course (4.13) = (4.12).

Note 1. The condition #(VZ) C .#(V,Z), which can also be written in the
equivalent forms

VZ=V2ZK for some K, (4.17)
V(V,Z)! =XS  forsome S, (4.18)

was obtained in an carlier paper [8]. The result (4.12) constitutes a natural
generalization of the author’s earlier result [7) for the case Vo =1, viz,, X'VZ =90
which implies #(VZ) C .#(Z) or .#(VX) C .#(X).

Note 2. The representation (4.13) was given in [8] under the additional
assumption that the columns of X and V,Z span the entire space. The gencral
form of the representation without this assumption is given by Mitra and Moore
[4] using a differcnt argument and not explicitly using the condition (4.12).
Theorem 4.2, however, uses a different approach which shows that the repre-
sentation is a direct consequence of the basic condition Z'V(V,Z)* = 0, or
H(VZ) C.#(V,Z) which is established without any assumptions.

Theorem 4.2 can also be stated in two other alternative forms,

Tueorem 4.3, If every linear function of Y which is a BLUE under V, is also
a BLUE under V, then the conditions in Theorem 4.2 are necessary and sufficient.
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The next Theorem 4.4 refers to the complete set of vectors providing BLUE's
or BLUE(W)'s as considered in Corollary 3.2.

THEOREM 4.4. Let ¥ and &V be the complete classes of veclors protiding
the best unbiased linear estimators under V, and V respectively. If ¥ C 4~
then the conditions given in Theorem 4.2 are necessary and sufficient.

Note. Theorem4.4 only demands that if L & #Vethen it also belongs to ¥¥
without requiring that the set of parametric functions estimated by any particular
linear function L'Y under V, is ¢ ined in the corresponding set under V.,
Theorem 4.5 takes into accaunt this requirement. We denote by 2 (V) 1he set of
parametric functions p'B estimated by L'Y under V.

Toeorem 4.5. Let N be a matrix of maximum rank such that N'Y =0
scith probability | under Vo , as defined in (2.6). Let

Le#% = Le#, (4.19)
and
FVo) TAYY). (4.20)

(i) IfNX =0, then (4.19) = (4.20) in which case V has the representation
(4.13).
(i) IfN'X 0, then it is necessary that

V =DAD + XTA,T'X’ (4.21)
whereD = ViZ, T = (N'X)* and A, A, are nnd matrices.
Itis already shown that {4.19) implies
ZV(V,Z) = 0. (4.22)
If, in additiun, (4.20) is also satishied then it is wecessary and sufficient thn
NY =0  with probability | under V, (4.23)
for which it is necessary that
VN =0. (4.24)
The condition (4.24) is included in (4.22) if N'X = 0. Otherwise we have to find

an nnd solution for V satisfying Eqs.(4.22) and (4.24). The conditiuns of the
Lemma 4.] are satisfied and we have the representation as in (4.21).
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Note that for sufficiency, in addition to the representation (4.21), N'Y should
actually be 2ero with probability 1.
Finally, we consider the problem of representing V such that the equations

XC=X, ZVC=0 ZVC=0 (4.25)

have a solution. It has been shown in Rao [8], that for (4.25) to have a solution
it is necessary and sufficient that (VZ : VyZ) and X are disjoint.

Trrorem 4.6, If (4.25) admils a solution, then V is of the form
V =XAX + (S:V,Z) A(S: V2) (4.26)

where 8 is any matrix such that (8 : V,Z) and X are disjornt, and A, A, are
nnd matrices.

The result (4.26) follows by applying Lemma 4.1. Mitra and Moore (4] give
a different representation.
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