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ABSTRACT

Formulae for multiple, partial and canonical correlation
coefficients are generally expressed in terms of the elements
of inverse covariance matrix. They are not applicable when
the covariance matrix is singular. In this paper, a unified
approach is presented to cover the singular and non-singular
cases. The formulae involve g-inverse of singular matrices
and the results are derived from a lemma on the structure of the
idempotent matrix AA~ where A~ is any g-inverse (i.e., AA~A=A).
The conditions under which some columns of AA~ are unit vectors
are obtained. The formulae for canonical correlations and the
canonical transformations of two sets of variables in the singu-
lar case are shown to be of the same form as in the non-singular
case, with the convention that only the proper eigen values and

vectors of determinantal equations are considered.

1. A BASIC LEMMA ON G-INVERSE

Let A be m x n matrix and A™ (of order n x m) be a
g-inverse of A, i.e., AA"A=A (Rao, 1962). 1f A is a square
matrix of order m admitting a regular inverse A-l, then

AA.I-Im. In general Q = AA™ ¥ Im' The following basic lemma
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2 Rao
provides the conditions under which some colummns of Q are unit
vectors.

We use the following notations. A' is the transpose of A,
A* is the conjugate transpose of A, p(A) 1s the rank of A, S(A)
is the linear space generated by the colummns of A and ey i1s the
i-th unit column vector, i.e., with unity in the i-th position
and zeroes elsewhere. A vector a; is said to be independent of
8y, 855, if there do not exist scalars b,, b3"" such that
a = bzaz+b3a3+... . By definition the null vector is always
a dependent vector.
Lemma. Let A'= (Ai: A)) be a partition of A and A== (3,2 B,)
be any g-inverse of A, Then

S(Ai) n S(Az') =0 <= (1.1)

AlBlAl = Al, AZBZAZ = Az, AleAz =0, AZBl = 0. (1.2)

Proof. By definition

A A A
1| B:B) [ 31 ] =] 1] e
(%) o () (3]

AlBlAl + AlBZAZ = Al, AZBIA.L + AZBZAZ = A2

' - R'A') = A'R'A! TRIAT o AV - R'A!
AL BlAl) AszAl, AlBlAz A2(I 52A2)' (1.3)

1f s(Ai) n S(Aé) = 0, then all the expressions in (1.3) must be
zero, which proves the if part.
Conversely let (1.2) hold and suppose that there exist

vectors a, and a, such that Aial = Ala Then using the condi-
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tions (1.2)

) - tmtat - TRYA! -
A3y = AjBrAja) = AByAzay = 0
which implies (1.1).
Corollary 1. Let A1 be p x n matrix. Then

S(A]D) 0 S(a)) =0, o(a) =p a.s

<= Alnl - IP' Aznl =0 (1.5)
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i.e., the firast p columns of Q = AA~ are unit vectors el....,e
for any g-inverse A™.

Proof. If (1.4) holds, then (1.5) follows by post multiplying
(1.2) by A; and observing that AlA: 1s non-singular. It is easy
to see that 1f (1,5) holds then p(Al) = p and the vector spaces
S(Ai) and S(Ai) have no non-null intersection.

Note 1. Corollary 1 shows that a necessary and sufficient condi-

tion for Qi’ the 1th column of Q, to be e

1 ig that the 1th row
vector of A is non-null and independent of the other row vectors
of A.

Corollary 2. Let each of p rows of A be independent of all the
other rows and each of q columns of A be independent of all the
other columns. We may assume without loss of generality that

these are the first p rows and q columns. Further let

TR _ | B1 Bi2

A=, A , A= B B (1.6)
21 22 21 “22

where A~ i9 any g-inverse of A, All is p x q and B11 is q x p

matrices. Then B,, 1s unique for all g-inverses.

11
Proof. By hypothesis p(A11 A12) = p and from Corollary 1,

A11511 + A12521 =1 (1.7
+ A, B

AyiBry ¥ Ayl ”
If there is an alternative differing form B1j by Cij’ then

A,
An 12

C, + C,. =0
[ A ] 1 ’ Ay ] 21

which implies cll = 0 using the conditions on the columns.
Note 2, Corollary 2 says that if the i-th row of A is indepen-

0. (1.8)

dent of the others and the j-th column is independent of the
others, then the (j, 1)-th element of A~ is unique.

Corollary 3. Let A be an n.n.d. (non-negative definite) matrix
and consider the partitions (1.6) with p = q. Then
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p(A) = p and S(A}) n S(A) =0 (1.9)

<= plAyy ARy TP .10)

- -1
in which case 311 = (An - A12A22A21) .
Proof. If (1.9) holds, Corollary 2 applies giving (1.7) and
(1.8). Multiplying (1.8) by Alezz and subtracting from (1.7)
we have (A11 12 22 21)3 = [ noting that AlZ = AIZAZZAZZ
since S(Au) c S(A22) for an n.n.d. matrix. The converse is
easy to establish noting that (1.10) implies p(Au) -p=o(A1)

- L}
and if there exist vectors a; and a, such that al 1 82A2’ then
= 0.

!
2. CORRELATION COEFFICIENTS

Let the joint covariance matrix of two sets of variables
be

1, ..,x and x

STSPTITIL SN

£, I

u

L= (o) - . (2.1)
4 ’ By Ep ]

If p(L) ¥ p + q, then some rows are dependent on the others, If
the 1-th row is dependent om the others, then X, is a linear func-
tion (may be non-homogeneous) of the other variables with proba-
bility 1.

It is shown in Rao (1973, p. 522) that the covariance watrix

of xi.(p+1)...(p+q)’1 =1,...,p, 1.e., of xl,...,xp eliminating

the regression due to xp+1”"'xp+q is

Ty = L,,E0,L

u " 2t (2.2
for any g-inverse of £22' Let £~ = (o J) be any g-inverse of I
and define L I~ = (Ql:"':qu-q)' We shall express the multiple
and partial correlation coefficients using only the elements of

I~ and the nature of Qi (whether it is e, or not).

i
2.1 SQUARED MULTIPLE CORRELATION

Theorem 2.1. The squared multiple correlation of x, on the rest
is
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2
Ri 03... " 1 4if Q) | 4 e and 0,, £0 (2.3)
=1-—L1_ ifq =e (2.4)
it 174
1

Proof. Theorem 3.1 is proved by Tucker et al (1973), and in a
more general form by Khatri (1976), using the correlation matrix.
We shall prove the results using the basic lemma and its corol-
laries.

Considerl§-2.2) with p = 1. If_gl = e, then 0y, # 0 and by
Corollary 3, ¢ = (Eu - 212252221) . By definition

2 S P Ul 477 1
1.23... 911
1
-1 -
11
0110

which proves (2.4). If Q, 4 ey Eyq = I plgpty; must zero by

Corollary 3. If 9 % 0, the formula (2.5) shows that
2

...
constant with probability 1).

= 1, which proves (2.3). (If 9, - 0, then %) is a

2.2 PARTIAL CORRELATIONS

Consider the partition of the covariance watrix (2.1) with
p = 2 and let the corresponding matrix (2.2) be

Y Y
- 11 '12
Ly, ~L 00,5, =
11 “12722"21 [721 Yy, ]
Then the covariance between x) 3 and Xy 3 is 112, and the
partial correlation is 712/”11722 provided Y 40, Y, $0.
We may define the partial correlation to zero if Y9 ™ 0 and at

least one of Yll and Y,, 18 not zero, and as unity if

"= a2 " Va2
theorem, which expresses the results in terms of the elements of

22
= 0, With this convention, we have the following

I~ only.
Theorem 2,2 The partial correlation between Xy and Xy eliminating
XypXyrees is
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=g

r m — 1f Q =e, and Q, = e,. (2.5)
12.34... % 11 2 2

=0 1if Q1 14 e and Qz = e, or
1f‘Ql =e and Q2 ] e, (2.6)

=1 1if Q1 o ey and Q2 ¢ ey 2.7

Proof. If Q1 =e and Q2 = ey, then by Corollary 3

Y ¥ -1 011 012
o2 o 2
Y1 Y22 °

which proves (2.5).

If Q1 =e and QZ # e, then Y11 4+ 0, but Yoy = Vg = 0,
i.e., the partial covariance and one of the partial variances
is zero, which by our convention proves (2.6). If Q ¥ e and
02 = e, then Y9, ¥ 0, but Y2 =Y ™ 0.

1f Ql ¢ e and Q2 # ey, then the residuals X33, 0 LI
are either degenerate random variables (in which case
Yy T Yop % Y12 = 0) or. non-degenerate linearly related variables
(in which case Y5 = Yy, Ypps Yy #0, Y59 * 0). By convention
in the former case and by the usual definition in the latter, the

partial correlation is unity, which proves (2.7).

2.3 CANONICAL CORRELATIONS

Consider the partition of the covariance matrix (2.1)
corresponding to two sets of p and q variables, If 211 and 222
are non-singular, Khsirsager (1972) has shown that transforma-
tions of the p and q variables into canonical variates can be

obtained by considering the singular value decomposition of

- -5 _ ! 2.8

Ip By Typ=kaQ (2.8

where I 2 and E_k are Gramian square roots of I . and [ We
11 22 11 22°

show that the same method works when Ell and 222 are possibly

singular by suitably defining the pre and post multiplying matri-

ces of 212.



COMPUTATION OF CORRELATION COEFFICIENTS

Consider the spectral decompositions

Ai
L., = . .
11 (Pl PZ) 0 0 (Pl' PZ)'

- . 2 .
Ly (Ql- Q,) 4, 0 (Ql. Q)"
0 o
Note that Pl is of order p x r where r = p(tll) and Q1 is of
order q X t where t = p(Ezz). Now, consider the singular value

decomposition of

-1 "' -1 a0 '

Al Pl 21201A2 = (Hl: Hz) [0 0 ] (Flz Fz) (2.9)
where A is a non-singular diagonal matrix of rank s = p(Elz),
with diagonal elements xl,...,xa. The transformations on

1! = (xl,...,xp)' and Yé = (x .»x . )' can be broken up into

1 ptl’ " Tpig
three parts
R e S
S1 wl Al P1 Yl . Tl Fl A2 Q1 Y2, (2.10)
oyt =1 oo ar' Al
52 = W2 A1 Pl Yl N T2 FZ A2 Ql Y2, (2.11)
= ! = '
83 P Yl N ’1‘3 Q2 YZ . (2.12)
The joint covariance matrix of Sl, Sz, 53, Tl, Tz, T3 is
Is ] 0 A 0 0
0 Ir-s 0 [ 0 0
[+] 0 0 0 0 0 (2.13)
A 0 0 Is 4] 0
0 0 0 0 I 0
t-s
0 0 0 0 0 0

Note 1. From (2.9) it 1s seen that Xf are the non-zero roots of

' - 2,2
[P121p T30 25y Py = A" 2] =0 (2.14)

which are the same as the non-zero roots of
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- - 2

1215 T35 Tpy By =27 1] =0 (2.15)

where le and XEZ are any g-inverses of Ell and 222 respectively,
As shown in Rao and Mitra (1971, p. 125), the non-zero roots of

(2.15) are the proper non-zero roots of

2
z Argl=0. (2.16)

125 T35 By -

[f is sald to be a proper root if there exists a non-null vector
- 2

Y such that 212 222 221 Y =2 zll Y and 211 Y # 0. The vector

Y is said to be a proper eigen vector.] Further (2.16) 1s equiva-

lent to

Iy I
AL

] =0 (2.17)
I 22
provided we consider only the proper non-zero roots. The equations
(2.16) and (2.17) are again of the same form as the determinantal
equations for canonical correlations in the singular case (see
8 £.1.2 and 8 £.1.6 on p. 583, Rao, 1973).

Seshadri and Styan (1977) give different versions of (2.16)
and (2.17) based on some matrices computed from I. But (2.16)
and (2,17) use the original I.

Note 2. The number of unit canoulcal correlations is

[} 2
p(le) - p(p1 L, Iy, Iy By - Al) from (2.14) (2.18)
=P -, L5, Iy IT; - 1) from (2.15) (2.19)

=p(Z;)) - p(zy) - Iy, I3, Iy;) from (2.16) (2.20)

= p(I;,) +0(Z,,) - p(2) from (2.17) (2.21)

remembering that in (2.16) and (2.17), the multiplicity of a root
is counted by the dimension of the proper eigen space.

The result (2.20) was given earlier by Khatri (1976) and the
result (2.21) by Seshadri and Styan (1977) using different argu-
ments. The case of singular covariance matrix was also considerud

by Hoschel (1974) in his general treatment of correlation and
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linear dependence between random vector variables.
Note 3. The canonical transformations (2.10) - (2.12) can be
directly obtained from the roots and associated vectors of the

determinantal equation (2.17). The equations for a given X are

- A 211 L+ 212 M=0 (2.22)

221 L= 222 M=0

The compounding vectors in the transformation (2.12) are the
orthonormal solutions of le L = 0 and 222 M = 0; the vectors in
(2.11) are the solutions of 211 L £ 0, 221 L = 0 and 222 M # 0,

212 M = 0; and the vectors in (2.10) are those obtained by sub-
stituting the non-zero proper roots of (2.17) in the equation (2.22).
Thus we have a unified approach to the theory of canonical corre-

lations, using the original covariance matrix I.
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