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ABSTRACT
The efficiency-factor of a treatment contrast in the sense
of Jones (1959) is examined from a classical view-point. An
upper bound for the efficiency-factor of any treatment contrast
is obtained and designs are characterised for which the upper
bound of the efficiency-factor is attainable by every contrast.
Two concepts of balancing in block designs, namely, Efficiency-
balance and Variance-balance are studied and inter-re-

lationships between these concepts are established.

1. INTRODUCTION

Throughout this paper, block designs with v treatments and
b blocks are considered. It is assumed that the ith treatment
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is replicated L5 times, i = 1,...,v and the jth block con=-
tains kj {not necessarily distinct) treatments, j = 1,...,b.
Let = (r,...,r))' k= (kyseendy)'e R = ding(rl,...,rv),
K= dj,ag(kl,...,kb) and N be the v X b incidence matrix of
the design. If T denotes the column vector of treatment totals
then 8'T is called a contrast of treatment totals if s'r=o,
where s is a column vector. The ‘intra-block component' of
s'T is defined by Jones (1958) as s'Q where Q is the vector
of adjusted treatment totals, given by Q = E-Nx-lg,g being the
vector of block totals.

Jones (1959) showed that if s is a right eigenvector
of the matrix M = R-LNK—]'N' corresponding to an eigenvalue
€(¥1l), then the loss of information on the 'intra-block
component’ of s'T is € 8o that the efficiency-factor of the
‘intra-block component' is 1 - €.

Since s'Q (the intra-block component of 8'T) is a function
of observations and not of parameters (treatment effects) the
concept of 'loss of inf ion' or ‘effici y-factor' of

s'Q is a little confusing when viewed from the classical
definition of loss of information. In the classical sense,
the loss of information refers to the loss incurred in estima-

ting a certain contrast of treatment effects through a design,

in relation to an orthogonal design.

In section 2 of the paper, an attempt has been made to
resolve this anomaly by deriving the result of Jones (1959)
using the classical approach. An upper bound for the
efficiency-factor of any contrast of treatment effects is
also obtained. Designs for which this upper bound is
attainable by any treatment contrast are characterised.

R block design for which every contrast has the same loss
of information (or, equivalently, same efficiency-factor) may
be termed Bfficiency-Balanced. The concept of efficiency-
balance is different from the one used commonly, according to
vwhich design is balanced if every elementary contrast is
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estimated through the design with the same variance. To
avoid confusion, the latter concept is called Variance-
Balance (see e.g., Hedayat and Federer, 1974). 1In Section 3,
certain results on efficiency-balanced designs are reported.
Interrelationships between efficiency-and variance-balanced
designs are also discussed.

Throughout, only connected designs are considered.

2. EFFICIENCY FACTOR OF A CONTRAST
AND AN UPPER BOUND

Consider a block design D{v,b,r,k). Let us postulate the

usual homoscedastic fixed effects model
y=ml+Dt+DDb+e (2.1)

where Yy denotes the observations vector, wm,t,b denote respect-
ively the general mean, the vector of treatment effects and the
vector of block effects, Dl and D2 are respectively the
treatment X observations and block x observations incidence
matrices, 1 1is a column vector of all unities and e is the
vector of residuals with usual assumptions, viz., E(e) =0,

E(e e') = 02I. The block and treatment effects are assumed to

be fixed. It may be noted here that Jones (1959) considers a
model with random block effects. Suppose s'T is a contrast

of treatment totals. The 'intra-block component' of s'T,

viz., s'Q, under (2.1) has expectation

E(s'Q) = s'Ct (2.2)
where

c=R- N n. (2.3

If M= R%NK"]‘N', we may write
= enwin/
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E(s'Q) = 8'(I - M")Rt. (2.4)

It is easily seen that 1 is a right eigenvector of M
corresponding to the simple eigenvalue unity. Suppose s isa
right eigenvector of M corresponding to an eigenvalue € (p}1),
that is

Ms=¢€s. (2.5)
Then, under (2.5),

E(s'g) = (1-€)s'Rt, (2.6)

so that an unbiased estimator of s' Rt in the design D is
5'Q/(1-€). The variance of this estimator is given by

V(Est. E'RE-)D = 02 s' R s/(1-€). (2.7)

Consider an orthogonal design, corresponding to the design D.
Por the orthogonal design, an unbiased estimator of s'Rt is

8'T and the variance of this estimator is

v(est. s'RE) = o’ s rs. (2.8)

The loss of information on s'Rt, estimated through D ,
relative to an orthogonal design is given by

L{s'Rt} = 1 - V(Est. 8'RE) /V{est. 8'RE),

= €. (2.9)

The efficiency-factor of the contrast g'Rt in the design D
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is 1-€. It is thus seen that the concept of loss of inform-
ation on the intra-block component is actually the loss on
s'Rt. Clearly, s'Rt is a contrast of treatment effects. Note
that any treatment contrast is expressible in the form 8'Rt,
for, if p't is a contrast (p'l = 0), then p't = E_'R_lm:-
=s'Rt with s = R-la. B

We now proceed to obtain an upper bound for the effic-
iency-factor of a contrast of treatment effects. Suppose P't
is a contrast. The best linear unbiased estimator of p't is
p't where t is a solution of the equations

ct = Q. (2.10)

Thus, p't = p'C @ where C is a generalised inverse of
¢, t.e., CC C = C. The variance of p't is ozg'c-g_. The

variance of p't in a corresponding orthogonal design is

029_'12-19_. Thus, the efficiency-factor of p't is given by

E=(p'Rp) / (p'Cp)- (2.11)

1f A 1is a Gramian matrix, the Cauchy-Schwarz inequality states

that for real vectors x and Y,

x'a0) (y'ap) > (x'Ap > (2.12)

The equality in (2.12) is attained if and only if (iff) x is
proportional to y.

Now since p't 1s estimable, p'C C = p'. Since C is
Gramjan, choosing x=p, A=C and y = ()" p in (2.12)
and simplifying, we get

E< eRpcn / @ (2.13)
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This gives an upper bound for the efficiency-factor of p't.
The equality in (2.13) is attainable iff

p=a (C)'p (2.14)
where O is a scalar. This implies

cp=acicH'p
or

cp=0ap. (2.15)

Thus any contrast p't is most efficiently estimated through
a design D iff p is an eigenvector of the C-matrix of the
design D. Under (2.15), the efficiency-factor of p't is
given by

E=(@p'R Y / (p'p). (2.16)

Consider now a variance-balanced design. It is known
(Rao, 1958), that a connected design is variance-balanced
iff its C-matrix is given by
c=8x-v<iuy, (2.17)
where © 1s a positive scalar. For variance-balanced des-
igns, cp=0p for all p such that p'l = 0. Thus, for

variance-balanced designs, any contrast of treatment effects

has the maximum efficiency-factor.

3. EFFICIENCY - AND VARIANCE -
BALANCED DESIGNS

In this section, results on efficiency-and variance-
balanced designs are discussed.
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It has been established by Calinski (1971) and Puri and
Nigam (1975) that a sufficient condition for a design to
be efficiency-balanced is that its M-matrix is given by

M=€I+ (1-€)1r' /n, (3.1)

where n is the total number of observations in the design.
That (3.1) is necessary as well for a design to be efficiency-
balanced was shown by Williams (1975). In what follows, an
alternative proof of the result is given.

Theorem 3.1 A necessary and sufficient condition for a

design to be efficiency-balanced is that (3.1) holds.

Proof (Necessity) Let the design be efficiency-balanced,
i.e., Ms=¢€3s for all s such that s'r = 0. This implies
that

(M-€ I)s = 0

for all s such that s'r = 0. Thus, r' belongs to the row
space of M-€ I. Since M-€ I is of rank unity, it follows

that there exists a (column) vector B such that

M-€ I =8r'
= (M-€ I) 1 =Br'1l=n8.

Further, M1 =1 and thus B = (1~€)1/n, which proves the
necessity. Sufficiency is obvious.
Q.E.D.

As mentioned earlier, the concepts of efficiency-and
variance-balance are in general different. The following
result gives the relationship between these two notions of
balance.
Theorem 3.2 If a design has any two of the following three

properties
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(i) Efficiency-balance
(ii) Variance-balance
(iii) Equal replication
then it has the thirad.
Proof (a) (i) and (iii) = (ii).
Let r, =r for all i since the design is equireplicate.

Then, the C-matrix of the design is given by
C = rxr (I-M).

Also, since the design is efficiency-balanced,

M=€TI+(1-€) xr11' /n

so that (3.2) boils down to

c=rxr (1-8) (1-v 11 1").

(3.2)

(3.3)

It follows that the design is variance-balanced, and (a)

is proved.

(b) (ii) and (iii) = (i).

since the design is variance-balanced, its C-matrix must be

of the form

1

c =0 (I-v "1 1")

where @ is the unique non-zero eigenvalue of

the design is also equireplicate,

M=I-C/rx

€I+ (1-€)r11' /n

where € = 1 - 0 / r. Thus (b) is proved.

C.

(1= / x) T +11' / vx

Now, since



EFFICIENCY BALANCED BLOCK DESIGNS 245

Note that since the eigenvalues of C for a variance-
balanced design are zero and O , the eigenvalues of the
-1
matrix P = NK "N' are r and r-0 for an equireplicate

negative.

(c) {i) and (ii) = (iii).
Since the design is both efficiency-and variance-balanced

its M - and C - matrices are given by

a (1~ 1110,

€EXI+(1-€) 1r'/n
and c *

which holds iff r,=r for all i. Thus, (i) and (ii) imply
(iii).
Q.E.D.

A design is called proper if kj =k for all j and
binary if the incidence matrix N is a zero-one matrix. The
following result characterises proper, binary efficiency-
balanced designs.
Theorem 3.3 1In the class of proper, binary designs, the
balanced incomplete block (BIB) design is the only efficiency-
balanced design, if it exists.

Proof Since the design is efficiency-balanced,

M=€I+ (l-€) 1x'/n
)

- P=NKIN' =€R+ (1-€) £ ' / n.

1f the design is proper, K-l =1/ k and thus
P=NN'"Y/k = ER + (1-€) r ' / n. (3.4)
Since the design is binary, (3.4) implies that

= (1/k-€) n/(1-€).

Ty
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Thus any proper, binary efficiency-balanced design is equire~-
plicate and hence (by theorem 3.2) variance-balanced. The only
binary, proper, equireplicate variance-balanced design is the
BIB design (if it exists).

Q.E.D.
Finally we prove
Theorem 3.4 The inequality b > v holds for all non-
orthogonal efficiency-balanced designs.
Proof It is well known that a necessary and sufficient condition
for a design to be orthogonal is that N = r k'/n. Thus, for
orthogonal designs, M =1 r'/n implying that orthogonal
designs are efficiency-balanced with € = 0. For orthogonal
designs M is singular. If the design is non-orthogonal
and efficiency-balanced, M is non-singular, for, M has
one eigenvalue unity and rest v-1 eigenvalues equal to
€, € > 0. Thus

V = Rank(M) = Rank(R *NK IN') = Rank (NK “n')
= Rank(N) < b.

Q.E.D.
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