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Effect of fuzzification on the plosive cognition system

SANKAR KUMAR PAL%
and DWIJESH DUTTA MAJUMDER{}

Fuzzy algorithms provide & simpler snd more powerful approach than siatistical
decision mothods for describing non-ideal {fuzzy) environments in which there exista
no precise boundary between the categories due to inherent vaguonesa rather than
randomness. This paper attempts to demonstrate the effectiveness of such an
algorithm when spplied to the computer recognition of patterns of biclogical origin
such as Telugu unaspirated plosives in initial position of large number of utterances
in CVC context. A multicategorizer is dmribed in which the fuzzy processor
embudies a fuzzy property tor and a similerily matrix g . A provision
for cunlrollmg luu_meu in property sets hed heen made by keepmg Lwo parameters,
I* fuzzifiers, in the components of property
malnul their effect on recognition lcons is also studied,

Machines' perf: are explained by plotting curves and through conlusion
matrices when transition, duration and elops of transition from the point of transient
releass of stop closure to the steady state of only first two formants wers used as
input features. Voiced stops sre dilferentiated more essily than unvoiced stops,
with the maximum overall recognition score ranging from 809 for dentals to 869,
for bilabials. The fuzzy hedge ‘slightly ' when spplied to property sets reduces
the confusion from that of the hedge ' very ' and consecutive utilizations of the
operations *CON *, " DIL ' and " INT" resulted in a wide variation of about 20 to 25¢,
in the recognition score. Such & variation is found to be insignificant beyond an
optimum vahue of the *exponential fuzzifier*,

1. Introduction

The concept of pattern classification is considered as & mapping from
feature space to decision space. Patterns encountered in the real world are
either deterministic, probabilistic or fuzzy, and in recognition problems,
these are rarely found to be deterministic rather than probabilistic and/or
tuzzy. The decision-making system for the classification of probabilistic
patterns can be made effective with the knowledge of statistical information
shout the input patterns. A priori information is available from the large
number of training sets, where statistical independency is assumed among
the components of the pettern. There are certain problems in which the
recognition of a pattern is considered essentially fuzzy, because there exist
no precise boundaries between catogories due to inherent vagueness (or fuzzi-
ness) rather than randomness. In such non-idesl environments, particularly
when the sample size is small, it is unreasonable to assume the statistical
independency of the events, and the fuzzy algorithm (Zadeh 19685, Thomason
1473, Zadeh ei al. 1975, Pal and Dutta Majumder 1977) then seemed to yield
a useful and simple method for the classification of ill-defined patterns.
Sincs speech, a pattern of biological origin, is found to a considerable extent
to be fuzzy in nature, its recognition is reasonably expected to be handled
within the framework of fuzzy language theory.
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Recognition of speech patterns is & very complex problem, involving
multi-level decision processes (Dulley and Balashek 1958, Reddy 1968, Dutta
Majumder and Datta 1969, Schaffer and Rabiner 1870). In order to achieve
clarity of understanding the whole problem of recognition is broken up inte
various parts, for example, the recognition of vowels and consonants, and
recognition of different phonemes in isolation and in connected speech. The
steady-state values of the formant frequencies are found to have potentia)
significance in-the automatic recognition of vowels (Reddy 1066, Dutts
Majumder et al. 1977). The transient nature of consonants makes them
more difficult than vowels for a machine to recognize. The information
regarding the place of articulation of stop nta is now believed to be
present in both the burst spectra and the transition of vowel formants (Halle
ef al. 1957, Lehiste and Peterson 1961, Sharf and Hemeyer 1972). The
listening experiment conducted by LaRiviere el al. (1975), with segmented
and gated speech with ten native undergraduate listeners, revealed that the
highest score was obtained when aperiodic and vocalic transition of the CV
syllables were presented to the listeners. The aperiodic portion included the
burst spectra. The results for recognition of ‘p’, ‘1’ and ‘k’, with target
vowels ‘i’, ‘a’' and ‘u’, are & great improvement over the results obtained
with vocalic transition alone. Experiments for Telugu unaspirated plosives
{Datta el al. 1977), using the maximum likelihood ratio as a method of classi-
fication, supported the above findings and showed the formant transition to
be & characterizing feature of consonant recognition. The role of transition
in the perception of stops is also considered to be important both in the
* transition-dependency * model and the * integration ' model.

The present study confines itself to the effectiveness of a fuzzy algorithm,
and on-glide transition and its rate are employed only as recognition pars-
meters on automatic recognition of initial unaspirated plosives in 8 CVC
(Consonant-Vowel-Consonant) context. Secondly, the effects of fuzzification
due to consecutive applications of * DIL’, * CON "and * INT ' operations on the
cognitive system are investigated. It is to be noted that although various
acoustic segments such as burst, aperiodic transition, aspiration, etc. seem
to contain perceptusl cues for stop consonants, the recent trend scems to
give emphasis only to the transition. The olassification analysis is based on
the fuzzy properties extracted from an unknown pattern. A final decision
for the purpose of recognition is taken by a machine which compares the
magnitudes of similarity vectors for different classes. The amount of
ambiguity in property sets is controlled by varying the values of two pars-
meters, F, and F,, called ‘exponentisl® and ‘d inational * fuzzifiers
respectively, encountered in an expression for computing the elements of
property matrices.

The acoustic features used for the classification of consonants are the
on-glide transition AF, the duration Al, and the rate of transition AF/A
from the point of transient release of stop olosure to the steady state of the
first two formants only. These are extracted from the spectrum analyais of
o et of Telugu (an important Indian language) vocabulary conteining about
600 commonly used speech unita in CVC combination, and uttered by three
informants. A Honsywell 400 computer waa used for the numerical analysis.
Different reeults are explained through confusi t and plotting ourves.
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2. Fuzzy sets and method of fuzzification
A furzy st A with its finite number of supports 2, ...z, in the
universe of discourse U is defined as

A={palz), 7} m
where the membership function g ,(x,), which is positive in the interval [0, 1]
denotes the degree to which an event z; may be a member of or belong to 4.
This characteriatio function can be viewed as & weighting coefficient which
reflects the ambiguity in a set ; as it approachea unity, the grade of member-
ship of an event in 4 becomes higher.
The operations which effectively create fuzzification on a set A4 are
summarized here.

(i) Concentration of A: CON (4)

=>poon wl®) =[p2)), V2 (2a)
(ii) Dilation of 4 : DIL(4)
>ppr WE) =[rl()?, Ve (2b)

(i) Conlrast intensification of 4 : INT (4)

Ay (2)P) O<py(r) <06
=>pmr wWi®)= (20
[-21—p )], 05<p z) <10

All these operations have the effect of altering the fuzziness of a set. The
effect of DIL (4) is opposite to that of CON (4) which reduces the magnitude
of p4(2) by a relatively smaller amount for those z with & higher membership
value in 4 compared to those with a low p -value. Contrast intensification,
a8 its name applies, reduces the fuzziness of A by increasing the values of
#2.4{x) which are above 0-5, and decreasing those which are below it.

The method of fuzzification can also be encountered by applying fuzzy
hedges on a set. A hedge is an operator which transforms a fuzzy set
representing the meaning of & term into another intensified or rarefied fuzzy
set. Suppose that the memborship value for a pettern to be *circular’ is
0-8, then its membership values for the composite terms ‘ (not (very (circular)))’
and ‘ (very (not (circular)))’ are 0-36 and 0-04 respectively. Although the
operators are same in both cases, the values differ due to non-identical

: . -~
q in their applicat

3. Fuzzy recognition system

Fuzzy set theory provides a suitable algorithm for the useful classification
of imprecisely defined patterns, pa,mcul&rly in problems having a small
number of samples, where statisti p y t be assumed (non-
parametric learning).

Figure 1 shows & state transition diagram of a fuzzy recognition model
where B=(b,, by, ... ,,) la the pomble outpub uymbol for each input. p,,
4 ooy iy B0 the g to the outputs associated
with each of the outgoing iti Null transiti ¢ having no output

In2
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Figure 1. A generslized fuzey recognition model.

are shown by dotted lines between the initial state T, and the final state T,
Thees are ealled deloti Other transitions described a8 7, — T, represent
betitutions and, transitions for T,—T,—T,, which produce two output
due to wrong segmentation of the input symbol, represent insertions. I the
segmentation is perfect (supervised segmentation) deletion and insertion erron
will not be present, but substitution error due to misclassification may occur
Let us now describe a multi-category furzy classifier on the baais of pro-
porties extracted from a pattern. The property p defined on an eveat riss
function p(x) which can have values only in the interval [0, 1] (Allen 1974).
For example, p, may denote that the outer boundary of a pattern is circular,
or a straight line, or that a lady is beautiful, blonde, or tall. Such a clamifier is
shown in Fig. 2 where the input pattern and decision (output) of the categorizer
are deterministic, but the process of classification is fuzzy.

Figure 2. The structuse of s fuzzy multi-cateyorizer.

The prep d N-dimensional patten X =(z,, xy ...i7,. ..7)) i
applied to & fuxsy processor consisting of fuzzy property matrices £, 1= {p )
for the ith prototype in category C,, where p,, () denotes the degree to which
the property p, is possessed by the ith prototype in C;. Since the output of
this processor 8,/ X)u= {24} rep sn N-dimensional fuzzy similarity




Effect of fuzzification on the plosive cognition syslem 877

vector, the non-fuzzy output '8(X) for C; may be obtained from either of the
equations
%8,(X) =max min {s,,} (3a)
L] !

or
"8,(X)=min [8,(X)| (35)

Then the pattern X is determined to be from kth class if

1S (X)=max '8,(X), & j=12,..,mandl=12, ..,k

The learning behaviour is expressed by using fuzzy property matrices
whose elements are determined from the equations

2.07-F¢
Pp= [1 + ] 4

Z,=max E{z} (5)
7
where E{-} denotes the expected value, and F, and F; are the ‘ exponential ’
and ‘ denominational * fuzzifiers respectively. For F,> I, p, is reduced by a
relatively smaller amount for those features with a higher property value
compared to those with low p,. With a further increase in F,, such reduec-
tion of the degree of property increases by a relatively smaller (higher) amount
for those events with a higher (lower) property value. .The reverse is true for
values of F <1,
The components of the fuzzy similarity matrices are defined as
Pn—Pss o

-1
Pus® :l ©

in which the numerical value of s,,'V denotes the grade of similarity of the
ath property of X with the Ith prototype in C,. The positive constant W is the
weighting coefficient. The mapping, for the purpose of recognition, from the
property plane onto the S-plane, satisfies the conditions

—1 -0
3"1“) a8 'p._p.l(l)'

Zn—Zn

4
and

—0 — 00
increases decreases

4. Experiment

The test material was prepared from the Telugu vocabulary containing &
set of discrete phonetically balanced (PB) speech units in the CVC context.
From these PB words, the velars ‘k ' and ‘g, the alveolars ‘t’ and ‘d’,
the dentals ‘'t ' and ‘d’, and the bilabials ‘p’ and ‘b’ in combination with
the ten vowels '9°, "a:’, ‘i’, ‘i:’, ‘u’, ‘ui’, ‘e’ ‘e:’, ‘0’ and ‘0:’,
including shorter and longer categories, were solected. These speech units
were recorded by five male, native educated informants on TDK tape with
an AKAT 1710 recorder. By a listening experiment among ten listeners, about
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600 samples uttered by three informants in the 30~35 age group were chosen,
The entire programme wasa conducted inside an empty auditorium of approsi-
mate dimensions 12x 30 x 6 m.

4.1. Feature extraction

Spectrum analyses of selected words were carried out using a standard
Kay Sonagraph 7020A audio-frequency spectrum analyser, which yields
permanent spectrographic display of frequency versus time in the range
5 Hz to 16 kHz. The system was operated in the normal mode in the 80 Hz
8 kHz band with & wide bandpass filter having a resolution of 300 Haz.

The manual extraction of features from apectrograms conaisted of the
following steps.

(#) Extrapolate the transition of the formants to the instant of the release
of stop closure, and measure the frequency at that point (beginning of
transition) from the base line of the spectrogram.

(b) Trace the central lino of the formant bands where the formant is
parallel to the base line (steady state), and meesure the formant vale
from the base Jine.

(c) Measure the duration of the transition from the point of rclease of
stop closure up to the instant at which the formant reaches a reason-
able steady state.

The scale used for the measurement of frequency is derived from the
calibrated 500 Hz tone recorded on each of the spectrograms. The arcuracy
of measurement is within 10 Hz. For every 50 spectrograms, two time-
marker recordings, one at the end and one at the beginning, were uscd. The
scale for the measurement of duration was constructed by taking an nverage
of these two recordings. However, throughout the whole recording process
no significant difference between these two recordings was observed. The
recognition parameters selected for the classification of consonants in & (‘¥
context are the amount of on-glide transition of the first two formants AF,
and AF,, their duration A¢, and rate of the transitions AF /At and AF,/AL.
The magnitudes of the trensitions are obtained by subtracting the values
of F at the steady state from those at the beginning of the on-glide transi-
tions. The transition rates are computed by dividing the magnitudes of the
transitiona by their duration.

In & few cases, for particularly fast informants, it hes been noticed that
the vowel hardly reaches a stable atate. The congruence of on-glide and
off ghde in these cases was taken aa the steady state. Also, the duta was

wh r the extrapolati d to be confusing. The total
number of patterns obtained after processing the spectrograms in this way
was only 504.

The respective parameters thus constitute & five-dimensional patter
vector space {ly, where each utterance of one of the three speakers may be
treated as an event from a population, and each dimension represents sn
invariant oharacteristio of that event. Since the longer and shorter categories
of & vowel differ more in duration then in phonetio scale, the ton vow els are
partitioned into aix classes: *3°, ‘a:’, ‘i’, ‘u’, ‘e’ and ‘o0’. Therefors
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vach point in the multidimensional vector space associates five measured
parameters of a CV context uttered by one of the three informants. The
number of such CV occurences for unvoieed/voiced plosive consonants with
Adifferent target vowels form a vowel-consonant matrix shown in Table 1.

2 19 9 21 22 18 6 24 |4
a: 27 5 18 7 13 28 2 1
e 4 4 16 18 9 7 5 5
o 8 8§ 1 5 6 5 8 6
u 19 6 9 11 26 17 8 16
i 12 12 20 9 5 17 15 6

Table 1. Vowel-consonant matrix showing the number of CV occurences.

4.2. Method of recognition

The method consists first of all in recognizing the plosives, irrespective
of speskers with a priori knowledge of the target vowel. The effect of fuzzi-
fication on recognition score is then investigated.

Prototype points chosen for recognition are the average of the coordinate
values corresponding to the entire set of samples in a particular class. Pro-
perties corresponding to each of the five parameters were computed using
eqn. (4) with Fy=100, m=4, N=5 and h=1. Finally, & mapping from the
property plane onto the decision plane was carried out, where each component
of the similarity vector was obtained via eqn. (8). The inverse of the standard
deviation of a recognition feature was used as its weighting coefficient so that
W decreased with increasing variance. In one part of the experiment, W
was considered to be unity in order to investigate the influence of phase
weights associated with the features. Again, in a few cases where standard
deviation of the coordinate values in a class was zero, the corresponding W
velue was set at unity. This is logical, in the sense that a property which
has an identical value for all members of a set is an all-important feature of
the set, and hence its contribution in the closeness measurement need not be

reduced. o .
The effect of fuzzification on a cognitive system was incorporated by

changing only the values of F,; Fy, being less active compared to F, in
creating ambiguity, it is kept constant at a value of 100. Various values
considered for F in the experiment are 4, 2, 1, §, {, § and -, such that F =2
represents the operation ‘CON’, F.=4 represents 'CON (CON)’, F.=}
represents ' DIL ", F =} represents ' DIL (DIL)", etc. In other words, the
fuzzy hedges ‘ very ', ‘slightly ', and their successive operations are being
implemented with these constants. Besides these values of F, fuzziness in
property sets was also introduced by applying the function ‘ INT .

With the above information, the fuzzy similarity matrices denoting the
degres of similarity between the pattern and the four classes for & specified
value of F, were formed. To sssign a proper class to an unknown pattern,
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the non-fuzzy decision was adopted by the machine by measuring maximum
closeness on the basis of the magnitudes of the similarity vectors.

§. Results

Typical values of the acoustic features for sll the unaspirated consonants
with the target vowel ‘u’ are shown in Table 2. Percentage recognition of
plosives for different target vowels is given in Table 3 for F.={. Figures
3 and 4 illustrate the variation of recognition score for unvoiced and voiced
counterparta respectively with different values of the ‘exponential fuzzifier'.

Plosive  AF, (Hz) AF, (Hz) At (ms)

k 0 - 150 80
3 50 400 30
t 100 225 40
P 0 100 80
g —50 —150 45
d 50 200 36
d 0 250 45
b 50 100 30

Table 2. Typical feature values of plosives for target vowel ‘u’.

The scores plotted are the average values of the results obtained against all
the target vowels. The correct rate of decision rendered by machine in
recognizing a consonant is found to increase with decreasing F.. Recognition
varies from about 20 to 25% (except for velars) as F, changes from f to
4. With further reduction of the value of F, beyond 0-5, the error rate does

vowel k t t P g d d b

2 31-58 8889 3810 10000 3334 5000 8334 10000
a: 48:14 6000 3750 100:00 3846 76-82  40-00 100-00
e 10000 7500 7500 2223 10000 8571 8000 40-00
[ 10000 6250 7273 10000 10000 10000 100-00  66-67
u 100-00 8687 8889  90-90 10000 58-82 2500 9378
i 01-67 2500 7000 1112 10000 6470 1334 6667

Table 3. Percentage of correct clsssifications of plosives (Fo= ).

not deteriorate significantly. The a,, value of an event corresponding to
P,=05 indicste its degree of *slightly belonging’ to & class. It could
therefore be stated that after an optimum value of the ‘exponentisl fuxzifier
is achieved, the ambiguity in property sets is not significantly altered, and the
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Figure 3. Variation of individual recognition scores (averaged over all the target
vowels) for unvoiced plosives with fuzziness in property sets.

variation of machine’s performance with fuzzification becomes insignificant.
For higher values of F,, the degree of possessing a property for samples
having low property values is reduced by a larger amount compared to those
having high property values, and as a result the magnitudes of fuzzy similarity
components are decreased for the samples in a common class.

CGRSR!C' ﬁsAl’((’-)_ §
r/ /} /
€ e |

A1 04 -06 -03 0 03 0¢
106 Fe

Figure 4. Variation of individusl recognition scores (averaged over all the target
vowels) for voiced plosives with fuzziness in property sets.

Voiced stops are seen to be differentiated more easily than the unvoiced
parts. The increase in the maximum score for voiced over unvoiced stops
is about 15% for the * p'/* b’ and * t /' d * pairs and about 7% for the 'k ’/' g’
psir. For the 't’'/*d’ pair, the variation is reversed at higher values of
F.. These results agree well with that of an earlier experiment (Datta et al.
1977).  The larger formant spreads for voiced stops indicate a greater co-
articulatjon with the following vowels, which is expected to be responsible for
better discrimination of the place of articulation for voiced stops once the
target vowel is known e priori.

The overall percentages of correctness with different target vowels and
their variation with fuzziness are shown in Figs. 5 and 6 for unvoiced and
voiced plosives respectively, Table 4 shows how the confusion introduced
by the machine in making decisions changes for different amount of fuzzi-
ness introduced into the property seta. To restrict the size of the paper,
only the results of voiced plosives for the target vowel ‘u’ are mentioned.
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Figure 5. Variation of overall recognition scores for unvoiced plosives (for different,
target vowels) with fuzziness in property sets.

The figure in 2 cell represents the number of instances in which the same
decision was made by the machine, and the diagonal clements therefore indicate
the number of events correctly identified. Confusion tends to be at g
minimum as F appronches a value of . Plosives in the initia) position
with back target vowels are found to be identified more easily than with
other target vowels.
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Figure 6. Variation of overall recognition scores lor voiced plosives {for different
target vowels) with fuzziness in property sets.

The dotted curves in Fig. 5 indicate the scores obtained by computing
the similarity components with a weighting coefficient of unity. This was
done only for one each of the front and back vowels. It appears, thercfore.
that the fixation of appropriate phase weights ensures the correct representa-
tion of feature importance in classification, leading to a marked improvement
in percentage accuracy. Again, it is interesting to note that the discrimina-
tion between the scores obtained with and without a weighting coelﬁ('iwl_l
decreases with increasing F. When the operation ‘INT’ is used to signi-
ficantly reduce the fuzziness of properties, the effect becomes prominent, as
can be seen from Figs. 7 and 8, where the correct rates obtained without 8
weighting coefficient are seen to exceed (except for target vowel ‘a: ') those
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Actual class Actual olass
Observed N Obeerved
class g d d b olass g d d b
g 26 1 g 26
d 10 5 1 d 10 8 1
d 5 2 d 5 2
h 2 15 b 2 15
(a) Fo=v¢ (b) Fo=}
‘Actual class Actual class
Observed - Observed -
class g d d b class g d d b
g 2% 1 g %
d 6 4 d 1 11 8 b
d 5 2 d 5 2
b 12 b 1 11
() Fe=1 () Fo=t
Actual class Actual class
Observed - Obgerved -
class g d d b olass g d d b
g 2 g 2% 1
d 1 11 8 9 d 1 n 6 10
d 5 2 d 4 2
b 1 7 b 1 [}
(e) Fo=1 h Fo=2
Actual class Actual class
Observed - Observed -
clasg g d d b class [ d d b
g 26 I3 22
d 1 8 [ 8 d 4 14 T 11
d 8 3 5 d 3 1
b 1 5 b 5
) Fo=4 (%) F,='INT’

Table 4. Confusion matrices of voiced plosives with target vowel “u’ for different
values of F,.
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oo} ™= WITH WEIGHTING COEFFICIENT
5 WITHOUT WEIGHTING COEFFICIENT

CORRECT RATE (*/e)

Y L]

Figure 7. Overall recognition scores of unvoiced plosives for different target vowels
when the fuzzifier ' contrast intensification * operates on the property sets.

obtained with a weighting coefficient. These fuzzifiers were found to provide
transformations in such a way that the weighting coefficients did not ensure
proper representation of the importance of the modified features, which
tended to be over-emphasized.

W WITH WEIGHTING COEFFICIENY
3 WITHOUT WEIGHTING COEFFICIENT

3
=3

bl

khy Ml kD kel

CORRECT RATE {*/)

Figure 8. Overall recognition scores of voiced plosives for different target vowels
when the fuzzifier * contrast intensification ' operates on the property sets.

6. Discussion and conclusions

Fuzziness in property sets has been implemented in order to study the
variation of a machine’s performance for the recognition of initial unaspirated
plosives in & CVC context. The on-glide transitional data ean be uxed to
identify the place of articulation of the voiced and unvoiced stop consonants
with a priori knowledge of target vowels. It is to be mentioned here that the
machine waa found to recognize about 829, of vowels using the first three
formanta (Psl and Dutta Majumder 1877, Dutta Majumder ef al. 1977). The
present results for machine recognition compare well with the human percep-
tion as obtained in the listening experiments conduoted with segmented and
gated speech with ten native undergraduate listeners (LaRiviere ¢! al. 1975)
and with several bandpass filters and seven poatgraduate male listeners (Pal
1974). The resuite of t gnition a3 conducted by LaRivierc ef al,
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(1975) with aperiodic and vocalic transition for the target vowels ‘i’, ‘s’
and ‘u’, are found to be 0-96, 1.0 and 0-81 for ‘p’, 1:0, 1-0 and 0-13 for ‘¢’
and 0-63, 0-83 and 0-95 for ‘k’. In & recent statistical study (Datts ¢! al.
1977) using transitional dsta and the maximum likelihood ratio, the overall
recognition scores for these unaspirated plosives were found to be 0-65, 0-69,
0-45, 0-9, 0-95 and 0-72 for unvoiced plosives, and 0-58, 0-65, 0-73, 0-95, 0-85
and 0-83 for voiced plosives, with the target vowels ‘ 9°, ‘a:’, ‘e’, ‘0’ ‘u’
and ‘i’. The corresponding results obtained in our experiment are marginally
better. Although the results do not differ much, the classification algorithm
has the advantages over the other mentioned that it is simpler, less time-
consuming, and does not require so much of the previous information con-
cerning the distribution of the eventa in & class. In addition, the method i
more significant for the following reasons.

(a) The burst apectra, an important cue, particularly the antiformants
were not included aa recognition features.

(b) The CV syllables in the experiment were taken from normally spoken
words, and therefore the effects of co-articulation from distant vowels
and consonanta are likely to affect: the transitions.

(¢) The minimum duration of vowels, 250 ms, for arriving at the perfectly
steady state could not be achieved in these utterances.

The role played by the ‘exponential fuzzifier’ is found to be satisfactory for
altering the fuzziness within property sets. The fuzzy hedge °slightly’
corresponding to the ‘DIL’ operator as expected, results in a better classi-
fication than does the hedge ‘ very ’ (F,=2-0). However, successive applica-
tion of the ‘ DIL’ operator does not ensure a further increase in the recognition
score. Or, in other words, after an optimum value of the ‘ exponential fuzzifier’
is achieved, the fuzziness of property sets is only sltered a little, and hence the
variation in the score becomes insignificant. A greater variation of about
20 to 269, in the accuracy rate (except for the velars) is achieved with values
of F, ranging from 4 to .

The reciprocal of standard deviation is found to provide an appropriate
phase weight for measuring the importance of the features, supporting the
findings of our previous experiments (Pal and Dutta Majumder 1977, Dutta
Majumder ¢ al. 1877). This characteristic is found to be significant for
property sets with & higher degree of fuzziness. The recognition score is likely
to be further improved by the inclusion of the transitional data of the third
formant and the date of the burst spectra. The method of feature extraction
used in the experiment ia by mo means perfectly clear and unambiguous.
Further investigations are necessary to obtain & better set of reference
constants.
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