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An efficient method of determining functional equivalencaw. 4
classes of a network with reconvergent fan-out

JAYAHREE DATTAGUPTAt and GERALD MUSGRAVT)

This paper is s study of the offects of the faulta on the !
combinational logic eircuit. The conditions whereby two dilforent feults can produce
tho samo functional output are investigatod, In thia approach two fault grapha of the
circuits aro :iﬁwn. i}; m:niyult:xini;he? f-}ll‘b grapha tho faults which aro function.
g o . o functionall

unctional operation of a

y oq can for determining
oquivalont olassos of faults in @ combinationsl eircuit, is p . Tho unique
feature of the ithi is that it prod, the true funoti equivalence (not
atructural equivalence) even for the circuit with reconvergent fan-out with unequal
parity.
1. Introduction

The indistinguishability among faults in a circuit have been studied by
many researchers (McClusky and Clegg 1971, Schertz 1969, Boute 1971).
Faults that are indistinguishable are said to be equivalent. There are various
types of equivalent relations. Most of the earlier work has been done on the
structural equivalence relation McClusky and Clegg 1971, Schertz 1969).
None of the existing methods were able to find the true functional equivalence
in all types of circuits. While it is true that any pair of fanits that are
structurally equivalent are always functionally equivalent, the converse is not
true. It is possible to have functionally equivalent faults that are not
structurally equivalent. This peper presonts a graphical representation of
the faults in a circuit from which functional equivalence can be obtained.
A algorithm is presented for finding the functional equivalence classes present
in & network.

In this paper the fault model used to represent circuit failures will be & line
stuck-at-1, line stuck-at-0 model. If a line 1 is stuck at 1 (0), it is considered
to be permanently tied to the logioal 1 (0) level. A ghorthand notation is used
for the fault model, the fault * line § 8-a-1 ia written as i1, and the fault i s-a-0
s written ag {0 °.

Faults that are functionally equivalent can always be detected by the same
test. All faults that are functionally equivalent can be grouped together and
ean be regarded a8 a class often called equivalent class. Thus faults that may
oceur in o network are partitioned into equivalent classes by equivalence
relations. This leads to & deeper understanding of the mechanism by which
faulte affect logio circuits. This has an immediate application in fault testing
end diagnosis. Any testing procedure that has access to a network only
through its input and output and which is capable of detecting a fault in the
fetwork can be guaranteed to also detect the presence of any fault that is
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1070 J. Dattagupta and G. Musgrave

functionally equivalent to F. Moreover, after finding the fumctionally
equivalent classes in a circuit, if separate tests can be derived for each clas,
then the fault location within an equivalence class can also be obtained by
epplying these tests.

2. Properties of faults and their definition

Let @ be a combinational circuit whose output function is denoted by
Z(G). The output function of the same cirouit under fault F is denoted by
Zp{G).

2.1. Fault equivalence (McClusky and Clegg 1971)
Two faulte F, and F, in & circuit are functionally equivalent if

ZF.(G) =ZF;(G)

This is denoted as F, ~ F,.
Any faults that are functionally equivalent are detected by the same tests.

2.2, Completely distinguishable faults (Dattegupta 1976)

Two faults F, and F, are said to be completely distinguishable if
Zp (G, TV#Zp,(G, T), where T is any possible input combination. This is
denoted by F,dF,.

Any faults that are completely distinguishable from one another should be
detected by the disjoint sets of the test (5).

2.3. Dominance (Mei 1970)

A fault F, dominates another fault F, if any test ! that detects F, by
observation on a primary output line, also detects F, on the same output line.
This is denoted by F, > F,.

If T, is the test set for detecting F, and T, is the test set for detecting F,.
then P,NTy=T,.

An equivalence relation automatically gives a dominance relation, but the
oonverse is not true.

3. Network graph

In the method to be described in this paper, the cirouit diagram is firt
transformed into two network graphs. Each line in the actual circuit is
represented by a node in each of these graphs. If I is a line in the actual
cirouit, if one graph contains a node 1!, then the other graph must contain s
node 1. These two graphs together contein all single fault nodes and can
be applied to find equivalence classes.

8.1. Basic rules of consiruction of the graph

Cirouits consisting of AND/OR/NAND/NOT gates are considered here.
First the method of drawing fault graphs for each of these gatca is described
and then the method of drawing the graphs for & complete cirouit utilising
these basio gates will be desaribed.
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Fault graphs for an AN D gate
Let Z e the output node and I,, I, I, be the input nodes of an AND gate.
For an AND gate
AET ALY KF A )
This can be represented graphically a8 & line, a8 shown in Fig. 1 (a).
For the same gate

1,Yd1 41} 2)
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Relations (2) and (3) can be combined together and can be represented graphi-
ally as a fork, as shown in Fig. 1 (b). This shows that a separate test is
required for detecting each input line stuck-at-1 and each of them also detects
the output stuck-at-1.
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Figare 1. Fault graph for an AND gate. {a) ‘1’ fault graph; (b) ' 0’ fault graph.
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Figure 2. Fault graph for an OR gate. (2) ' 1’ fault graph; (5) ‘0 fault graph.
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Vigure 4. Fault graphs for s NOR gate. (a) ‘1’ fault graph; (b) ‘0" fault graph.
4p2
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In o similar way the fault graphs for an OR gate is drawn, as shown 1y
Figs. 2 (a) and 2 (b). Fuault graphs for 2 NAND gate are shown in Figs. 3
and 3 (b). Fault graphs for « NOR gate are shown in Figs. 4 (2) and 4 (b).
3.2. Faull graphs for the complete circuit

While drawing the fault graphs for & complete circuit one should stary
from any of the primary output lines of the circuit and trace backwards untj
all the different paths starting from the primary output lines and reaching the
different primary input lines are covered.

From the nature of the graphs for each type of basic gate it has beey
found that only two types of connections are possible between the input and
output nodes. One type of connection is fork type and the other is of line
type.

When drawing the graph for a complete circuit if a line connection is
obtained, input nodes are not actually connected to the succeeding input
nodes in the first stage. But they point towards the next input node, that is
I, pointing to I, I, pointing to I, ete. Only the last input node I, is connected
to the output node. In the next stage one proceeds with the last input nodeand
tests whether it is a primary input node or not.

If it is a primary input node, then this node is connected to the preceding
node which is pointing towards it, that is I, will be connected to I,_,, etc.
But if I, is not & primary input node, then it must be an intermediate point
and so one traces farther backwards until one reaches the primary inputs
conneoted to these intermediate nodes. Let J, and J, be the primary nodes
connected to I, then I, will be connected to these primary nodes J, and J,
instead of I, and J, and J, will in turn be connected to I,. This will be best
illustrated with an example.

Example

For the circuit shown in Fig. 5 the actual drawing of the graphs is show
in Fig. 6 {rom step 1 to step 6. The complete graph is obtained in step 6.

Once the complete graphs are obtained, the next step will be to find
squivalent classes from these two graphs. By manipulating these graphs th
feult equivalence of a network can be obtained.

Before describing the actual algorithm, some definitions of the theorsss
regarding the graphs will be discussed.

Apath. A pathin o graph is o line which passes through some fault nodes
and starte with some definite starting-point and end-points.

E F

Thus ABC is & path D but EFGHE is not a path.
O——O——0Q

H 6
A B ¢

A complete path, A complete path in & graph is defined to he thet pb
which sterts from one end of the graph and ends in the other end.

Primary nodes. Primary nodes in & path are defined to be thoss nod¥
whioh lie on the main path but not on sny branch or parallel path.
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Figure 5. The circuit diagram.
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Figure 8. Fault graphs for the circuit of Fig. 5. (a) ' 0’ fault graph; () ‘1°
fault graph.

Secondary nodes.  Secondary nodes in a path are defined to be those nodes
which lie on the branch portions of the path.

In the graph shown in Fig. 7, the complete path from node 1 ia 1-(2, 3)—
{~5. Of these, 1, 4, 5 are primary nodes and (2, 3) are secondary nodee.
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)
Figure 7. The graph.

Theorem 1

In any path, if a primary node m® or n” exists, then in the same path
primary node m? or # cannot, exist, where m and n are fan-out branches from
the same point and v={0, 1}.

Proof

Let, in one path, both nodes m® and »! exist, then for detecting those faults
the signals present at the fan-out stem will be 1 and 0 at the same time, which
is not possible.

If in any path both ms and #o exist, then that line ié not a path.

Lemma 1

If in a path a primary node m® exists and in some branch path a secondary
node nv exists, then that branch line on which secondary node nr exists will be
detected from that path.

Proof
The proof follows from theorem 1.

Theorem 2

If 1 is a fan-out stem and I, and I, are fan-out branches from that stem, if
1,°=4,° where v{0, 1}, then I° =i °x],"
Proof

The fan-out stem stuck-at-fault makes both fan-out branches faulty.
And if both fan-out branches are stuck-at-0 (1), they produce the same effect
a8 the fan-out stem stuck-at-fault 0 (1) :

TR A
Now if

AL
then

T AL

4. Description of the algorithm
Utilizing these definitions and theorems the functional equivalence in a circuit
from these graphs will be obtained as shown below.

Step 1
Start with the primary output node.
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Siep 2
q’li‘mm this node try to find & complets path.

Step 3
Check whether any branch lines are non-existent. If not go to step 5.

Step 4

It any branch line is non-existent, delete that branch and check whether
only one branch line exists in the reduced path. If a single branch line exists,
then consider it as a main line in the path. Go to step 5.

Step §
All primary nodes along this path excluding the fan-out stem nodes and inputs
feeding that fan-out stem points are grouped together and are equivalent.

Siep 6
The fan-out stem node and its input feeding nodes are grouped tugether
and are cquivalent.

Step1
Start with the preceding node that is not yet covered by any equivalence
group and go to step 2.

Step 8
Continue step 1 to step 7 until all nodes in the graphs are covered. The
algorithm will be beat illustrated with an example.

Eramole

From the example 1 the graphs are obtained as in Fig. 6.

Starting with one of these graphs, say 6 (a), the equivalent classes for this
graph are obtained as shown below.

From uutput node 1° the complete path ia obtained but no other primary
todes exist on this path.

So node 1 is not equivalent to any other fault and so is a single iteni in
tim 1.

C={19

Next proceeding with the preceding node 2! a complete path 2'—4a%— 40—
S50~ (401, 6b') is obtained. Of this, 451, 6b! are secondary nocles. the rest
of them are primary nodes. But of the branch (40!, 6b?) the branch 4b' is
son-existent. for this path by lemma 1, as 4a° lies on the main path. Then
61, 50, 5a®, 49, 4ad, 21 are all primary nodes. Of this, 49, 5° are faults on the
fan-out stem and 30 are excluded.

8o

Cy={8b", 5a°, 4a°, 2!}

Cy= {50}
04 = {40}
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Similarly, starting with the node 3!, a complete path is obtained, and after
deleting the non-existent branch paths we get the nodes (primary)
31— 0a1— 6% 55°—» 5% 4b!
Of these, 5° 6° are fan-out stems.
So
Cy={31, 8ad, 550, 4b1}
Co={6%
All the nodes in the graph 6 (a} are covered.
Starting with the graph 6 (b) a complete path is obtained through node 1!,
Of these, 11, 29, 3° are primary nodes :
C,={11, 29, 3%}
Next proceed with node 4a' and a complete path 4a'—4!—3°—((6a'—8Y),
(566145969 is obtained. Of these, the branch 5b!—5'—4b°—6° is non-
existent by lemma 1.
So 4!, 41, 64", 6! are all primary nodes. Of these, 4, 61 are excluded, us
they are fan-out stem faulta :
Cy={4a', 6a'}
Cs = {‘ﬂ}
Crpo= {31}
Similerly with node 5a!, 5a'—5!—4b%—»6°—5b1—5!~450— 60 i3 a path. Of
these, {52, 4b°, 6%} are excluded. So C,, = {5a!, 5b!).
Since 5a! ~5b!, by theorem 2, 5! x5! 2 5b! :
Cya={4b0, 689, 5%, 5a2, 5b1)
So there are 11 classes of equivalent faults existing in the circuit.

Thus any single fault can affect the output function in only 11 different
ways.
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Ciy -] 2
Cg 0 %o
(]

Figure 8. Diagram for finding equivalence class.

The same example with Schertz's method generatea 15 equivalent classes.
asshown in Fig. 8. But in the actual case, if the output functions are generated
for all single faults, it will produce 11 different output funotions.
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The reason for having more equivalence classes in Schertz's method is due
to the fact that it generates structural equivalence classes not functionally
equivalent classes, The existence of functionally equivalent faults which are
not structurally equivalent has been shown to depend directly on the presence
of reconvergent fan-out paths in the network (Boute 1971).

5, Couclusion and discussion

The basic motivation of this work is to find equivalence classes of faults
present in a circuit. It was possible to find equivalent classes due to various
types of & structural equivalence relation in a circuit. But so for for networks
with a reconvergent fan-out an efficient procedure for calculating functional
equivalence classes was not known.

This paper presents an algorithm which generates functional equivalent
classes of faults present in a circuit. It can handle circuits with reconvergent
fan-outs with unequal inversion perity. The algorithm presented here is
straizhtforward and can be easily programmed on & digital computer. The
algorithm can detect those faults which are functionally equivalent. Though
the work presented here is mainly theoretical, it does have some direct applica-
tion both to testing and diagnosis. Most procedures for developing tests for
combinational circuits start with a list of faults to be tested ; it follows directly
from the definition of functional equivalence class. Thus the list of faults
need contain only one representative from each such equivalence class rather
than each individual fault. Fault equivalence is also relevant to diagnosis,
since it is not possible to distinguish the faults of an equivalence class by
observing only the network outputa.
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