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SPLITTING A SINGLE STATE OF A STATIONARY PROCESS
INTO MARKOVIAN STATES!

By S. W. DHARMADHIKARI
M ichigan State University and Indian Stalistical Institule

1. Introduction and summary. Let [ Y., n = 1] be a stationary process with
a finite state-space J. Let & denote a state of J and let 3, ¢ denote finite sequences

of statesof J. If 8 = (&1, -+, 8a), let p(8) = P[(Yy, -+, Y,) = s). The rank
n(8) of a state 5 is defined to be the largest integer n such that we can find 2n
sequences &, --- , 8, &, -+, {3 such that the n X n matrix |[p(s:5(;)| is non-

singular. The number n(5) was first defined by Gilbert [5] and the term rank was
first used by Fox and Rubin {4]. A state 5 is called Markovian if n(5) = 1. It is
easy to check that & is Markovian if, and only if, p(sét) = p(s8)p(8t)/p(8) for
all s and ¢.

Suppose that u is a fixed state of J. Let J' = J — {u}. Assume that n(x) < .
Fox and Rubin have shown that there exists a stationary process [X,] with a
countable state-space I = J' uJ” and a function f on I onto J such that
(a) f(2) = uifieJ” and f(8) = 8if 6 £ J'; (b) states of J” are Markovian states
of {X.}; and (e) {Y.} and {f(X,)} have the same distribution. Gilbert [5] has
shown that J” must have at least n(p) elements whereas Fox and Rubin {4]
bave given an example to show that J” cannot always be chosen to be finite. For
5 £ J’ let »(5) denote the rank of §in | X.]. In general »(5) = n(3). But Fox and
Rubin have shown that {X.} can be constructed in such a way that v(8) = 1
whenever n(8) = 1. Finally they have shown that, if n(ux) = 2, then {X,] can
be chosen in such a way that J” has 2 elements and »(8) = n(8) forall 5 ¢ J'.

In this paper we give some conditions under which J” can be chosen to be
finite. These conditions are similar to those imposed in [2]. It is shown that |X,)
can be constructed in such & way that, for 8 € J', »(8) = 1 whenever n(5) = 1.
Finally it is proved that if N(u) = n(u), then »(5) = n(s) for all 5 J’. This
generalizes the result proved by Fox and Rubin for the case n{u) = 2. However,
they bhave given results for the non-stationary case also. The results of this paper
were partially reported in [3].

2. The main result. We recall that u is 2 fixed state of J of finite rank. The
finiteness of n(u) can be used (see [1] and (2]) to find 2n(u) sequences s, , b ,
t = 1,-+-, n(u), such that the matrix ||p(8.uls;)| is non-singular. Let m.(¢)
denote the row vector whose ith element, is p(s,ut). Then, for every s, thereis a
unique row vector «,(s) such that, for all ¢,

(1 p(sut) = au(s)m' ().
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Let €(a,) denote the closed convex cone generated by the vectors a,(s) where
8 varies over all finite sequences of states of J. Define €(#,) similarly. If @* de-
notes the dual cone of a cone €, then (1) shows that €(a,) C [€(m,)]*.

Let H,, denote the set of all sequences of length m of states of J. We interpret
H, as the set consisting of the empty sequence 2. For conventions regarding &5,
see [1]. Let H = Un_o H.. . Define H,." and H' from J' similarly.

For notational compactness we adopt the conventions ¢{& = ¢ and &t = (.
Foru ¢ H, let A,(u) denote the n(u) X n{u) matrix whose ith row is a,(s,uuu).
Then equation (1) and the uniqueness of «,(8) can be used to show that for all
sceH, teHandue H,

(2) () Au(w) = au(spu) and Au(w)m'() = m/(unt).

The state u of finite rank will be split into a finite number of Markovian states
under the following condition.
Conbirtion C, . There is a convex polyhedral cone @, generated by N () non-

zero vectors 8,;,% = 1, - -- , N(g), such that
(3) e(a) € e c [e(m)];
(4) fuihAu(u) e, forall 7 andall ueH'.

It is a straightforward consequence of (2) that if either €(a,) or &(m,) is
polyhedral then condition C, holds with €, = €(a,) or €, = [e(m)]".

We now assume that condition C, holds. Let B, be the N(g) X n(u) matrix
whose ith row is 8,: . It follows from (3) that for every u ¢ H’ there is a non-
negative vector g.(u) such that g,(u)B, = a,(u). Further (4) shows that, for
every ueH’', we can choose 2 non-negative matrix M,(u) such that
BnAu(u) = Mu(u)By- ,

Observe that ¢.(&) has been defined. For sequences s¢ (H — H), define
¢.(8) by induction as follows.

(5) qulsme) = qu(s)Mu(w), weH'

LeEMMA 1. For all s ¢ H, a,(8) = g,(s)B. .

Proor. The lemma holds for all s ¢ H' and hence for sequences of length zero
in H. Suppose it holds for all sequences in H of length < n. Let s have length
(n + 1) and belong to H — H'. Then s = s'uu where s has length < nandu ¢ H'.
Therefore

‘Iﬂ(s)Bu = Qu(sl)Mn(u)Bu = q,.(s')B,A,.(u) = au(s')Au(u) = au(sl“u) = a,(s).

The lemma thus follows by induction.

The Markov-state {X,} that will be constructed will have state-space
I'=JuvJ" whereJ” = {pi,i=1,--- , N(u)). If gui(s) denotes the ith entry
of g.(8) then, for a sequence s ¢ H, , we want to have

gui(8) = P[(Y1,-+-, ¥p) = 8 Xap = pi.
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But we also want |X,} to be stationary. This means that g.(s) must satisfy
certain stationarity conditions. We proceed to show that a choice satisfying these
conditions can be made.

We note that the vectors 8., are non-zero. This easily implies that
B,m (&) > 0. Therefore the 8,'s can be chosen in such a way that 8,7, (&) = e, ,
where e, is the column vector all of whose ¥ (u) elements equal 1. We assume
that this has been done. Then, for all s¢ H,

(6) qu(s)e = @u(8)Bum () = aul(8)m/(F) = p(su).

For s¢ H, define ¢,”(s) = D uu. q.(ts). Then (6) and the stationarity of
[ Y] imply that

(7 a"(s)en = p(eu)
for all se H and form = 1, 2, --- . It follows from (7) that 0 < ¢,"(s) < ¢,
Define

Ba(s) = 27" g™ (s).
Then 0 < 6,(s) < ¢, for alln and s. Since the number of sequences s is countable,
there is a single subsequence {n,, k = 1} of positive integers such that §,(s) =
lims.. 6., (8) exists for all s H.
Lemma 2. Forall s e H, §u(s)B, = au(s).
Proor. The uniqueness of a,(s) and the stationarity of {Y,] show that

QMM(S)BA‘ = ZNH,.. au(ls) = au(3)~

Therefore 6,(s)B, = ou(s). This proves the lemma.
Lemma 3. For all s € H, §u(s) = 2 eu,, Gu(ls).
Proor. If the lemma holds for m = 1, then

Z:Mllm.n qu(ts) = Zutum an Gu(vus) = Z"‘Hm Gu(us)

and the lemma follows by induction for all m. It is thus enough to prove the
lemma for m = 1. Observe that

@) = Dot 0(u8) = D, Deern qulvts) = Loew, 0™ (t5).
Summing for m = 1, -+, n and dividing by =n, we get
6n(8) + 27 (2" (8) — 0.7(8)] = Xuew, 0a(ts).

Replacing n by 7. and letting k — o we get the lemma for m = 1. This proves
the lemma.

Lemma 4. For all se H and we H', qu(suu) = Gu(s)M.(u).

Proor. Straightforward.

The preceding three lemmata show that §.(s) has all the properties of g.(s)
and also has the required stationarity properties. From now on we will use §.(s)
without any reference to the original ¢(s) and will suppress the bar over g.

Recall that 7 = J'u J”, where J” = {u,, 5 = 1, ---, N(u)}. Let Gn be the
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set of all sequences of length m of states of I. Let G = Un_;G,.. Define F,
and F similarly from Iu [u}.

For we H', let r,iu) = Buims (u). Recall that 8,:'s have been choseu in such
a way that r. (&) = 1 for all ©. For t £ G, we define r,,(¢) by induction as fol-
lows.

(8) rai(upit) = [Mu(u)]imai(t),
where u £ H' and [M,(u)];; denotes the (&, 7)th term in A/,(u). For ¢ & F, define

r.i(¢) by induction as follows.

ruunt) = 208 ra(upyt), uelG.

Finally r.(¢) will denote the column vector whose #th entry is r,:({).
LEMMA 5. Forall te H, r,(t) = B,x,'(t).
Proor. Straightforward by induction.
LemMma 6. ForallueFandve F,

ru(upv) = 225 ru(unp).

ProoF. The definitions yield the lemma for u ¢ G. For u £ F — G, the lemma
follows easily by induction.
LemMmAa 7. For all ueF and ve F,

raiupp) = rai(up;)re(v).

Proor. For « ¢ H' and v ¢ G, the lemma follows from definitions. For
ueF — H and ve F — G, we can use induction and L.emma 6 to prove the
lemma.

LemMA 8. Forallte F

2 ucom Tu(tu) = 1u(t).

Proor. As in the case of Lemma 3 it is sufficient to prove the lemma for
m = 1.If L ¢ H, then

Pwo ru(tw) = T ) + Zewo i) = mltn) + Zuem (i)
= Dven rulte) = Zuew, Bumy(tu) = By Puem, m(tu) = Bum, (1)
ra(t).
Ifte F — H then ¢t = vpw where v ¢ F and w ¢ H. We then have
e, TalTU) = Duco, ru(Bpnu) = 2uca, ) rai(wn)
= 7o) Yweo, rs(wu) = ruomdrs(w) = ruopw) = rn(L).

This proves the lemma.
LemMma 9. Forallse Hand te H,

qu(8)r(t) = p(sut).
PROOF. 9,(8)7.(t) = qu(8)Bum,/ (1) = ou()m,/ (1) = p(sul).
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We are now ready to define the underlying stochastic process { X,] with state-
space /. Define the finite dimensional distributions as follows.
(9)  PUXy,---,X.) =u]=pu), if ueH,, and
PiXy, -, Xa) =undt] = quilw)ra(t), if wueH' and teG.

TueoreMm 1. The fintte dimensional distribulions defined by (9) are consistent
and the resulling process { X .} s stationary. Every u: is a Markovian state of {X.}.
Moreover, f f(ui) = u for all 7 and f(8) = & for s J’, then {Y,) and f(X,)|
have the same distribution.

Proor. (a) Consistency. First let w ¢ H,'. Then

3o PUXL, -+, Xapa) = wi]
= ZUEPPUXy, v, Xan) = uw] + s PUXa, oo, Xan) = w)
= 218 quiu) + Doy p(uwr) = qu(u)ru(D) + Dues, plur)
=p(us) + Zow, p(w) = 2Zoap(uw) = p(u)
= P[(X:, -+, Xa) = u).
Next let s = upw where u ¢ H and v ¢ G. Then
Zwa PUXy, o0, Xapr) = sw)
= o PUXy, -+, Xon) = upaw] = Fuco, quilte)rui{vw)
= qui(u) 2wea, Tuilow) = gui(u)ri(v) Pi(Xy, «++, Xa) = uupa].

This verifies consistency
(b) Stationarity. First let u ¢ H,'. Then

PX2, -+, Xop1) = ul
= 2o PUXL, -+, Xop) = wu]
= ZEPPIXy, oo Xan) = watl + Do PUX, o, Xaw) = v
ﬂ:)qyi(g)ru-'(u) + Z,mlop(w) = pluu) + Z",l,p(w)
Z.:H.P(W) = p(u).
Next let s = uuw where w ¢ H' and v ¢ G. Then
P(Xa, -+, Xpp1) = s
= Zwa P(Xy, -+, Xouy1) = wuny)
IR PUXy, -, X)) = wuna] + Dweme PUXS, -+, Xars) = wuns)
S0 QA D) + ey quiwu)rai(v)
1 @il BV M) jiri(2) + Ten gus(r0u)rai(v)
= Guils) 7 (v) + e, uswu)rui(v)
= [Zwu.qu-‘(w)l"ur(v) = qi(u)ni(v) = P[(Xy, -+, Xa) = upal.
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This checks stationarity.
(¢) The second statement of the theorem follows easily from (9) and the
last statement follows easily from Lemma 9.

3. Markovian states of [Y,.| can be kept Markovian. In Section 2 the state
uof {Y,} was split into N(u) Markovian states of {X,}. We will use the same
letter p to denote the probability function of the process {X.}. For 6 £J’, let
»(8) be the rank of 4 in {X,}. For w ¢ H and ¢ ¢ H, the probability p(uét) can be
obtained by adding probabilities p(véw) where v and w vary over certain sub-
sets of G. It therefore follows that »(3) = =n(8). It is desirable to construct
{X,} in such a way that »(8) = n(8) for all 5 £ J'. Whether this can be achieved
under the condition C, is an open question. In this section we show that
if n(8) = 1 then we can arrange to have »(§) = 1. We will exhibit this ounly for
one Markovian state.

Let £ be a fixed state of J and let n(£) = 1. In this section s will denote a
sequence in H’ which does not involve £. We define g, (u) for « = s and &s as
before. We also define M, (s) as before. Foru & H' let g (uts) = p(ut)qu(ts)/p(£).
For sequences ¢ in H — H’ which do not involve £ define g.(¢) by gu.(uus) =
g.(w)M,(s). For te H' define r.(t) as before. Complete the definition of A7,(¢)
for t ¢ H' as follows:

M (ubs) = ru(ub)gu(s)/p(8), weH.

We can now define g,(¢) for all sequences ¢ in H which involve both u and ¢ by

using (5). Finally we can use (8) to define r.(¢) for all sequences tin ¥ — H’'.
It is straightforward to verify that all the lemmata of Section 2 hold for the

above choices of g, and r,. It i8 also easy to prove that for £ G and u ¢ G,

ru(utt) = r(ub)p(8)/p(£),
and forve H and we H,
qu(vkw) = p(vE)q.(kw)/p(£).

THEOREM 2. The process { X.} given by Theorem 1 through the above choices of
qu and r, has v(E) = 1.
Proor. We must show that, forte Gand u e G,

(10) p(tku) = p(E)p(u)/p(E).

(a) If te A and u ¢ H', then (10) follows because n(¢) = 1.
(b) Lette G — H andu &£ G. Then ¢ = wuaw where v ¢ H' and w £ G. We have

p(lku) = plopavtu) = qui(v)rui(win) = qui(v)rui(wE)p(fu)/p(£)
= p(onwt)p(ku) /p(£) = p(t)p(gu)/p(f),

which jis the same as (10).
W(e) Let te H and ue G — H', Then u = vpaw where v ¢ H' and we G. We
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have

I

ptku) = p(livuar) = qui(tkv)ruw) = p(E)qui(E)ru(w)/p(£)

= p(t&)p(kvpav) /p(£) = p(tE)p(tu)/p(£).
This verifies (10) and completes the proof of the theorem.

4. The regular case. In this section we assume that conditions C, hold with
N(p) = n(u). We call this the regular case. In this case the matrix B, is non-
singular and therefore a vector g.(s), non-negative or not, satisfying g.(s)B,
= a,(s) is uniquely determined as q.{s) = a,(s)B,™". Similarly A/, () is uniquely
determined. Non-negativity of ¢,(s) and M.(u) is guaranteed by condition
C, and the stationarity propertics are guaranteed by Lemma 3. Since M, (u) is
unique, so is 7,(¢) for all te F.

Suppose now 3 eJ and let n(8) < w.Fork = 1, ---, n(8), choose su . t5
and, for & H, vectors ms(t) and as(¢) as in the first paragraph of Section 2.
We note that we may choose the su’s and the £i’s in such a way that they belong
to H'. This is because, for s € H, p(s) can be obtained by linear combinations o
p(u) where u varies over some subset of H'. For s ¢ H, A,(s) will denote the
n(u) X n(8) matrix whose ith row is a;(s,;us). The matrices A, (s) arc defined
similarly. It can be shown from the uniqueness of a that for all s¢ H, t¢ H,
ueHandve H

a,(8)Au(u) = as(spu),
Aup(u)m'(¢) = m/(ust),
Ap(u)Ay(v) = Au(udv).

In the above results x4 and 5 can be interchanged.
Suppose ax(s) denotes the kth element of as(s). We need two lemmata.
LeEmMA 10. Let se¢ H and u ¢ H. Then

(11) S rD apl(8) qu(subn) = gu(sdu).
Proor. The left side of (11) = D ;iU an(s)au(sxdu) By’ = as(s)As(u)B,™'
= a,(séu)B,”" = qu(ssu).

To state the next lemma we need to define as(s) for all s £ F as follows. For
t=1,--+,n(u) and s ¢ H, we define

oag(ps) = q‘u'(z)ﬂm'/lul(s)-
For the remaining sequences in F, we define
as(uud) = plup)gu(D)]  aslue), where v £ H.
Lemma 11. Forallse H,teHandi,j =1, ++- ,n(p),

[M,(e&t)].-, = [q,..-(,@)]" Zl:‘-(:) alk(#-‘s)(]yj(slk'”)-
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Proor.
23 M u(580))isBui
= Buidu(88t) = Buidu(8)An(t) = [qui( @) aslpig) Aau(t)
= [gui( @) 005D asn(pes ) (Bundt)
= [gui(2))7 00D aun(mis) 20720 Gui(oanbt) By
= 2P (@i @)™ 20080 sl 148) gus (58t 1B,; -

The result now follows from the linear independence of 8,;'s.

For ¢ £ G we now define ms(¢) as the column vector whose kth entry is p(saudt),
where this function p now refers to {X.,}.

TuEoREM 3. In the regular case, the process { X} given by Theorem 143 such that
w(8) = n(8) forallseJ’.

Proor. If n(8) = o« then »(8) = «. So let n(§) < . To show that
»(8) = n(8) we must verify that, forall se Gand t £ G,

(12) p(sdt) = an(8)m(t).

(2) If se H and ¢ e H’, there is nothing to prove.
(b) LetscH andteG — H'. Thent = uup wherev ¢ G and u £ H'. We have

p(sdt) = p(sdupp) = gui(s0u)rui(v) = DoP5Y au(8)qui( smdte) (V)
= 22080 an(s)p(subunw) = as(s)m’(upw) = as(s)ms'(2).
(¢) Let s¢ G — H' and t ¢ H'. Write s = uuw where w £ Gandv e H'. Then
p(s8t) = p(unwst) = p(up)rui(vst) = p(up:)Bui ' (v88) = p(up:)Buidus(v) s’ (1)
p(upd)(gui( @) aa(uw)ms () = ap(upp)m’ () = as(s)m(t).

(d) Let 36G — H and te G — H'. Write 8 = uup and ¢ = wuy where
ueG,veH, we H and y¢G. Then

p(sst)

plupwdwpy) = plup:) M (v6w))ijrii(y)
pCupd) [gui D)7 220 anl ) gui(sudw) ()
p(und)(gui( )] 22050 an(ua)p(sndwuy)
P(und) (i )] "ca(po) ™ (wuy) = alupe)ms (wuy) = aa(s)ms’(2).
This verifies (12) and completes the proof of the theorem.

CoroLLARY. If n(n) = 2, then we can split u into two Markovian slates in such
a way that »(8) = n(8) for all 5¢J .

Proor. It was shown on page 1037 of [2] that if n(z) = 2 then we are in the
regular case. Hence the preceding theorem applies.

The result stated in the above corollary has been proved by Fox and Rubin

[4). However, they have considered the non-stationary case also whereas the
present paper is restricted to the stationary case.

I
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