Linear and Multilinear Algebra, 1987, Vol. 21, pp. 211-214
Photocopying permitted by license only
© 1987 Gordon and Breach Science Publishers, S.A.
Printed in the United States of America

Majorization and Singular Values

R. B. BAPAT

Indian Statistical Institute, 7, S.J.S. Sansanwal Marg, New Delhi, 110016, India

(Received August 13, 1986)

A majorization result is proved which involves the singular values of a matrix A and those of $\sum D_k A E_k$, where D_k , E_k are arbitrary matrices of the same order. The result generalizes previous majorization results concerning eigenvalues of hermitian matrices.

If A is a complex square matrix, we write $A \ge 0$ to indicate that A is hermitian positive semidefinite. If $A \ge 0$ is an $n \times n$ matrix, then $\lambda_1(A) \ge \lambda_2(A) \ge \cdots \ge \lambda_n(A)$ will denote the eigenvalues of A and $\lambda(A)$ will denote the column vector with its *i*-th entry equal to $\lambda_i(A)$, $i = 1, 2, \ldots, n$.

If A is an $n \times n$ matrix, then $S_1(A) \ge S_2(A) \ge \cdots \ge S_n(A)$ will denote the singular values of A, which by definition are the eigenvalues of the matrix $|A| = (A^*A)^{1/2}$, and we denote by S(A), the column vector of the singular values of A arranged in nonincreasing order.

If $x \in R^n$ is a column vector, then $x_{[1]} \ge x_{[2]} \ge \cdots \ge x_{[n]}$ will denote the components of x in nonincreasing order and x will denote the corresponding column vector.

If $x, y \in \mathbb{R}^n$, recall that x is said to be majorized by y, and we write $x \prec y$, if

$$\sum_{i=1}^{k} x_{[i]} \le \sum_{i=1}^{k} y_{[i]}, \qquad k = 1, 2, \dots, n-1,$$
 (i)

and

$$\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}.$$
 (ii)

Also, x is said to be weakly majorized by y, $x <_w y$, if in the above definition condition (ii) is changed to $\sum_{i=1}^{n} x_i \le \sum_{i=1}^{n} y_i$.

If A, B are $n \times n$ matrices, $A \circ B$ will denote their Schur (or Hadamard) product, which by definition is $A \circ B = ((a_{ij}b_{ij}))$. The same notation will apply to vectors. If B is an $n \times n$ matrix, diag (B) will denote the column vector $(b_{11}, b_{22}, \ldots, b_{nn})$.

The following results were obtained in [1]:

- (i) If $A \ge 0$, $B \ge 0$, then $\lambda(A \circ B) \prec_{w} \lambda(A) \circ \operatorname{diag}(B)$;
- (ii) If $A \ge 0$ and if D_1, D_2, \ldots, D_m are $n \times n$ matrices, then

$$\lambda(\sum D_k A D_k^*) \prec_{w} \lambda(A) \circ \beta$$

where β is any vector which weakly majorizes both $\lambda(\sum D_k D_k^*)$ and $\lambda(\sum D_k^* D_k)$.

When the matrices D_1, D_2, \ldots, D_m are all taken to be diagonal matrices, (ii) reduces to (i).

The purpose of this note is to extend (ii) to a result concerning singular values. We make use of a technique employed by Okubo [4] to obtain majorization results for singular values from the corresponding results for eigenvalues. We state this technique in the form of a lemma.

LEMMA 1 If $X = \begin{bmatrix} X_{11} & X_{12} \\ X_{12}^* & X_{22} \end{bmatrix} \ge 0$, where X_{11} , X_{22} are square and of the same order, then

$$S(X_{12}) <_{w} \frac{1}{2} \{ \lambda(X_{11}) + \lambda(X_{22}) \}.$$

Proof Since $X \ge 0$, there exists a matrix W such that all its singular values are less than or equal to one and

$$X_{12} = X_{11}^{1/2} W X_{22}^{1/2}.$$

It is well-known ([3], p. 249) that for any $n \times n$ matrices U, V: $S(UV) <_w S(U) \circ S(V)$. Hence

$$S(X_{12}) \prec_{w} S(X_{11}^{1/2}) \circ S(W) \circ S(X_{22}^{1/2})$$
$$\prec_{w} S(X_{11}^{1/2}) \circ S(X_{22}^{1/2})$$
$$= \lambda(X_{1}^{1/2}) \circ \lambda(X_{22}^{1/2}).$$

The result follows by an application of the arithmetic mean-geometric mean inequality.

The following is the main result.

THEOREM 2 Let A; D_k , E_k , k = 1, 2, ..., m be $n \times n$ matrices. Then $S(\sum D_k A E_k) \prec_w S(A) \circ \beta$,

where β is any vector which weakly majorizes all the vectors: $\lambda(\sum D_k D_k^*)$, $\lambda(\sum D_k^* D_k)$, $\lambda(\sum E_k E_k^*)$, $\lambda(\sum E_k^* E_k)$.

Proof As noted by Okubo [4],

$$\begin{bmatrix} |A^*| & A \\ A^* & |A| \end{bmatrix} \geqslant 0. \tag{1}$$

Pre- and post-multiply (1) by

$$\begin{bmatrix} D_k & 0 \\ 0 & E_k^* \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} D_k^* & 0 \\ 0 & E_k \end{bmatrix},$$

respectively, and sum over k = 1, 2, ..., m; to get

$$\begin{bmatrix} \sum D_k |A^*| D_k^* & \sum D_k A E_k \\ \sum E_k^* A^* D_k^* & \sum E_k^* |A| E_k \end{bmatrix} \geqslant 0.$$
 (2)

By Lemma 1,

$$S(\sum D_k A E_k) <_{w} \frac{1}{2} \{ \lambda(\sum D_k |A^*| D_k^*) + \lambda(\sum E_k^* |A| E_k) \}.$$

Now the theorem follows from result (ii).

We note a few consequences of the theorem.

COROLLARY 3 If A, B are $n \times n$ matrices, then $S(A \circ B) \prec_w S(A) \circ \beta$, where β is any vector which weakly majorizes diag|B| and diag $|B^*|$.

Proof We can write $B = U\Delta V$, where U, V are unitary and Δ is the diagonal matrix which carries the singular values of B along its diagonal. Let D_k be the diagonal matrix whose diagonal entries are exactly the corresponding entries of the k-th column of $U\Delta^{1/2}$ and let E_k be the diagonal matrix whose diagonal entries are exactly the corresponding entries of the k-th row of $\Delta^{1/2}V$, $k=1,2,\ldots,n$. Then $A\circ B=\sum D_kAE_k$ and it can be verified that the result follows by an application of Theorem 2.

The following result has been obtained by Horn and Johnson [2] and by Okubo [4].

COROLLARY 4 If A, B are n × n matrices, then

$$S(A \circ B) \prec_{w} S(A) \circ S(B)$$
.

214 R. B. BAPAT

Proof By a well-known result of Schur the eigenvalues of a hermitian matrix majorize its diagonal elements. Thus S(B) majorizes both diag |B| and diag $|B^*|$, so the result follows from Corollary 3.

COROLLARY 5 If A, B are $n \times n$ matrices where $B \ge 0$ and $b_{ii} = 1, i = 1, 2, ..., n$; then

$$S(A \circ B) \prec _{w} S(A)$$
.

We remark that according to Corollary 5, if A, B are $n \times n$ matrices where $B \ge 0$ and $b_{ii} = 1, i = 1, 2, ..., n$; and if $|\cdot|$ is any unitarily invariant norm (see, for example, [3], p. 264), then

$$|A \circ B| \leq |A|$$
.

We conclude by indicating yet another application of Lemma 1. It is well-known ([3], p. 243) that if A, B are $n \times n$ matrices, then

$$S(A+B) \prec_{w} S(A) + S(B). \tag{3}$$

It is possible to assert a bit more:

LEMMA 6 If A, B are $n \times n$ matrices, then

$$S(A + B) < \sqrt{\frac{1}{2}} \{\lambda(|A| + |B|) + \lambda(|A^*| + |B^*|)\}$$

 $< \sqrt{\frac{1}{2}} S(A) + S(B).$

Proof We have

$$\begin{bmatrix} |A^*| + |B^*| & A+B \\ A^* + B^* & |A| + |B| \end{bmatrix} \ge 0.$$

The first majorization of the lemma now follows by Lemma 1. To get the second assertion, note that $\lambda(|A| + |B|)$ and $\lambda(|A^*| + |B^*|)$ are both majorized by S(A) + S(B) by an application of (3) to hermitian matrices.

REFERENCES

- R. B. Bapat and V. S. Sunder, On majorization and Schur products, Linear Algebra Appl. 72 (1985), 107-117.
- [2] R. A. Horn and C. R. Johnson, Hadamard and conventional submultiplicativity for unitary invariant norms on matrices. *Linear and Multilinear Algebra* 20 (1987), 91-106.
- [3] A. W. Marshall and I. Olkin, Inequalities, Theory of Majorization and Its Applications, Academic Press, 1979.
- [4] K. Okubo, Holder-type inequalities for schur products of matrices, manuscript.