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A majorization result is proved which involves the singular values of a matrix A and those
of Y D, AE,, where D, E, are arbitrary matrices of the same order. The result generalizes
previous majorization results concerning eigenvalues of hermitian matrices.

If A is a complex square matrix, we write A = 0 to indicate that 4 is
hermitian positive semidefinite. If 4 > 0 is an n x n matrix, then
A,(A) = A,(A) = - - - = 1,(A) will denote the eigenvalues of 4 and A(4)
will denote the column vector with its i-th entry equal to A/A),
i=1.2,...,n

If Ais an n x nmatrix, then S,(4) = S,(4) 2 - -- = S,(A4) will denote
the singular values of A, which by definition are the eigenvalues of the
matrix |4| = (4*A)'2, and we denote by S(4), the column vector of the
singular values of A4 arranged in nonincreasing order.

If xe R" is a column vector, then x;,3 = X(2) 2 - - - 2 X, Will denote
the components of x in nonincreasing order and x will denote the
corresponding column vector.

If x, ye R", recall that x is said to be majorized by y, and we write
x=<y,if

k
Y xg< ¥ wge k=12...,n-1, @)
1 i=1
and

Y xi=3 (i)

Also, x is said to be weakly majorized by y, x<,, y, if in the above
definition condition (ii) is changed to Y 7-, x, < Y7, yi
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If A, B are n x n matrices, AsB will denote their Schur (o¢
Hadamard) product, which by definition is A B = ((a;b,)). The same
notation will apply to vectors. If B is an n x n matrix, diag (B) will
denote the column vector (b;,, bss, ..., by).

The following results were obtained in [1]:

(i) If A= 0, B> 0, then A(4- B) <, A(A)-diag (B);

@ii)If 4> Oand if D,,D,,...,D, are n x n matrices, then

AY. D,AD}) <, A(4) B
where 8 is any vector which weakly majorizes both A(Z D,D¢)and
A(Y DED,).

When the matrices D,,D,,...,D,, are all taken to be diagonal
matrices, (ii) reduces to (i).

The purpose of this note is to extend (ii) to a result concerning singular
values. We make use of a technique employed by Okubo [4] to obtain
majorization results for singular values from the corresponding results
for eigenvalues. We state this technique in the form of a lemma.

X X
Lemma 1 le=[ 1 12
XY X,
of the same order, then

S(X12) <WHAUX 1) + UX3,)}

Proof Since X > 0, there exists a matrix W such that all its singular
values are less than or equal to one and

Xia = XIPWXAE.

It is well-known ([3], p. 249) that for any n x n matrices U, V.
S(UV)<,,S(U)-S(V). Hence

S(X12) <. S(X 1) S(W) e S(X32)
<wS(Xif)eS(X35)
= AX}2)e AX35N.

The result follows by an application of the arithmetic mean-geometeic
mean inequality.
The following is the main result.

:I = 0, where X |,, X ,, are square and
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THEOREM 2 Let A; Dy, E,, k=1,2,...,m be n x n matrices. Then
S(Y. DyAE) <, S(4)=B,
where B is any vector which weakly majorizes all the vectors: (Y. D,D}),
AL DED). AQY E\E?), (Y EXE,).
Proof As noted by Okubo [4],

A* A
[ 4o .

Pre- and post-multiply (1) by

D, © D 0
[0 E:] and [o Ek]’

respectively, and sum over k= 1,2,...,m; to get

Y. D,|A*D¥ Y. D,AE,

>0. )
Y EtA*DY Y EMA|E,

By Lemma 1,

S(}. D,AE,) < ,3{A(}, D,|4*|D}) + A(Y EX|A|EL)} .

Now the theorem follows from result (ii).
We note a few consequences of the theorem.

CoroLLARY 3 If A, B are n x n matrices, then S(A> B)<,S(A)oB,
where B is any vector which weakly majorizes diag|B| and diag|B*|.

Proof We can write B = UAV, where U, V are unitary and A is the
diagonal matrix which carries the singular values of B along its diagonal.
Let D, be the diagonal matrix whose diagonal entries are exactly the
corresponding entries of the k-th column of UA'?2 and let E, be the
diagonal matrix whose diagonal entries are exactly the corresponding
entries of the k-th row of AY2V,k = 1,2,...,n. Then Ao B =) D,AE,
and it can be verified that the result follows by an application of
Theorem 2.

The following result has been obtained by Horn and Johnson [2] and
by Okubo [4].

CORrOLLARY 4 If A, B are n x n matrices, then
S(A~B)<,S(4)>S(B).



214 R. B. BAPAT

Proof By a well-known result of Schur the eigenvalues of a hermitian
matrix majorize its diagonal elements. Thus S(B) majorizes both diag|B|
and diag|B*|, so the result follows from Corollary 3.

COROLLARY 5 If A, Bare n x n matrices where B> Oand b, = 1,i=
1,2,...,n; then
S(A-B)<,S(A).

We remark that according to Corollary S, if 4, B are n x n matrices
where B2 0 and b,=1, i=1,2,...,n; and if || is any unitarily
invariant norm (see, for example, [3], p. 264), then

|4-B| < |4|.
We conclude by indicating yet another application of Lemma 1. Itis
well-known ([3], p. 243) that if A, B are n x n matrices, then
S(A + B)<,,S(A) + S(B). (3)
It is possible to assert a bit more:
LemMA 6 If A, B are n x n matrices, then
S(A4 + B)< ., 4{3(4] + |B|) + A(4*| + |B*|)}
<., S(4) + S(B).
Proof We have
|4%| +|B*| A+ B >0
A* +B* |4|+|B)”
The first majorization of the lemma now follows by Lemma 1. To get the

second assertion, note that (/4| + |B|) and A(]4*| + |B*|) are both
majorized by S(A4) + S(B) by an application of (3) to hermitian matrices.
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