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ABSTRACT

A Z-matrix is a square matrix with ff-di: J el We give a

polynomial algorithm for testing the nonnegativity of principal minors of Z-matrices.

1. INTRODUCTION

Real square matrices with nonnegative (positive) principal minors are
called Pymatrices (P-matrices). A real square matrix with nonpositive off-
diagonal elements is called a Z-matrix. In this paper, we use the terminology
of Berman and Plemmons [2, Chapter 6] with regard to M-matrices. An
M-matrix is a Z-matrix which is also a Pymatrix. A square matrix A is an M-
rpatrix if and only if it can be written in the form A = sl — B, with B > 0 and
s> p(B), the spectral radius of B. A nonsingular M-matrix is a P-matrix, and
its inverse is a nonnegative matrix.

In Section 2, we introduce the notation and briefly discuss certain
required preliminary results. In Section 3, we consider the problem of testing
whether a given Z-matrix is also an M-matrix. A polynomial algorithm is
proposed for this purpose. The proposed algorithm is essentially based on
certain known results of the linear complementarity problem and Lemke's
algorithm.

2. NOTATION AND PRELIMINARIES

All the vectors are column vectors unless explicitly stated otherwise. The
components of a vector x € R" are denoted by x, x,,..., x,,. The notation
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x 2 0 means x, 2 0 forall §, x>0 means x 2 0and x#0, and x > 0 means
> 0forall j. We shall denote by e the vector in R” whose components are
aﬂ equal to unity. Let A be an m X n matrix. We shall denote by A', a,, and
A .and A., respectively its transpose, (i, f)th element, ith row, and fth
For any ty subsets aC (1,2,...,m} and BC (1.2...,n),
we shall denote by A_; the submatrix of A conlmmng those rows and
columns whose indices are in a and B respectively. If any one of the sets o
and B is a singleton, say 8 = { ), then the corresponding submatrix is also
written as A, . The identity matrix of order n is denoted by I. The
cardinality of a set o is denoted by |a).
The following simple results are used in the sequel.

Lemma 1. Let A be a square matrix which can be written in the
partitioned form

-2 )

where B and D are square matrices. Then A is a Pymatrix if and only if §
and D are Pymatrices.

Proof. The required assertion is a trivial consequence of the definition df
Pymatrices.

Lemma 2. Let A be a Z-matrix of order n such that the principal
submatrix A, is a nonsingular M-matrix, where a= (1,2,...,n-1)}. Th
matrix H obtained by replacing the last col of A by e is then nonsingular,
and (H™'),.2 0. Moreover, ifx=H'A.,, then:

(i) x,>0 = A is a nonsingular M-matriz.!
(i) r,>0 = x,<0.

Proof. We can write A and H in the partitioned form

PR L Y R T WS
“la,. a,) ™ 774, 1)

na nn

1t is possible to assert
(i) x,=0 = A is a singular M-matrix.
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Let f=(8,,—A,,ALJA,,) and g=(1—A,,A Je,). By Schurs de-
terminantal formula we have

det A= fdetA,,, 1)
det H=gdetA,,. (2)

The hypothesis implies det A,,>0 and g2 1. The nonsingularity of H
follows from (2). It is easy to verify that

(HY)a=(-g'A.A00g7") 20. 3)
From (3) we get
x,=—g A AA,, +g e, =g !f. (4)
It is known (see [4, Theorem (4,3)]) that a Z-matrix is a nonsingular M-matrix
if and only if its leading principal minors are positive. Therefore the hypothe-
sis implies that A is a nonsingular M-matrix if and only if det A> 0. The
validity of assertion (i) follows from (1) and (4). By making use of the
observation A., = Hx, we get
T,= AL (A —ex,).

The validity of assertion (ii) follows easily.

Lemma 3. Let A be an M-matrix of order n ( 2 2) such that the matrix H
btained by replacing the last column of A by e is nonsingular. Ifr=H"'A ,
thenx; 50 forall j#nandx,20.

Proof. For any s€R, let A(s)=sI+ A and H(s) denote the matrix
obtained by replacing the last column of A(s) by e. We note that A(s) — A
and H(s)— H as s — 0. Since A is an M-matrix, it follows (see [4, Theorem
(5,1)]) that A(s) is a nonsingular M-matrix for all s > 0. By hypothesis and
Lemma 2 we observe that H(s) is nonsingular for all s > 0. Since [H(s)] ™! =
H~'as s — 0*, the required assertions follow from Lemma 2 as the limiting

case when § — 0",

For a given square matrix A of order n and g € R", the problem of
finding a solution (if any) to the system (A, g) of constraints

w—Az=gq,
w20, 220, w'z=0.
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is known as the linear complementarity problem (LCP). The complementary
pivot method proposed by Lemke for this purpose is referred to as Lemke's
algorithm in this paper. For the terminology used in this context and other
details we refer to standard texts such as [1) and (7). It is known that Lemke’s
algorithm terminates in finitely many steps, finding either a complementary

basic feasible solution or a dary ray, under the assumption of nonde-
generacy or by incorporating a deg y lving procedure like the
lexicographic rule.

We shall denote by L(A, g) the application of Lemke’s algorithm for a
given instance (A, g) of the LCP. We shall assume throughout this paper that
for initiating L(A,q) we introduce the artificial variable z, by using the
vector ¢ and write the initial system as

w—-Az—ez;=4q,
w20, z20, 220,

w'z=0.

This does not involve any loss of generality as far as the results of this paper
are concerned.
We note that L(A, g) terminates in a secondary ray when (A, g) has no

solution. The results of Lemma 4 which are based on this observation play a
key role in this paper.

Lemma 4. Suppose A is a Z-matrix of order n and q € R" is such that
(A, q) has no solution. Let R = ((, 7, Zo)+ N, Z, Z): A 2 0} denote the
secondary generated by L(A,q), and also let a= {j: 2;# 0} and B=(}: 2,
=0}. If £,#0, then A is not an M-matrix. On the other hand, if 4=0,
then:

(i) =0, £20, and AZ=0,
(if) Ay, =0 when B is nonempty,
(iii) A, #s an M-matrix.

Proof. It is well known (5, p. 686) that ©20, 220, % =0, and
h— A2 —e2,=0. If £,+0, then (b, £) is a nontrivial solution to (A, e£,).
Hence (see [3, Lemma 3, p. 620]) A is not a Pymatrix. Suppose now £, =0.
In this case we have b = A2. We note that 2,> 0=, =03and 23=0=
thy = Ag,2,. The facts that 20, 2,>0, and Ay, 50 imply b =0 and
Apg,=0. Since 2,>0and A_,2,=0, it follows (see [4, Theorem (5,4)]) that
A, is an M-matrix.
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Lemma 5. Let A be a Z-mairix of order n, and q € R" be such that
i < 0. Then (A, q) has a solution if and only if A is a nonsingular M-matrix.

Proof. See [6, Theorem 4.1] and [2, Theorem 2.14, p. 273].

LEMMA 8. Let B be an almost complementary basis matrix of L(A, q)
with a= (j: 1., is a column of B}, B=(f: — A_, is a column of B}, and
(1.,,—A.,)} being the leftout pair of complementary columns. If A is an
M-matrixand y=B™'(— A ,), them:

(i) B,=—e=y20,
(i) jEBand B, = - A ;= y, <0

Proof. Let II be the permutation matrix such that

A Ay A,
MAI'=|Ag. Aps Ap,
Au A B a,,

We shall assume without loss of generality that the columns of B are so
arranged that

L. —Ayp -6

MB=|0 —Ayp —¢
0 -4, -1
We note that
y=~B7'A,=-B"'II'lIA = [1I(- B)] "!(ITA.,).
Since the matrix

Agp Ap,
Ay a,

satisfies the hypothesis of Lemma 3, the required assertions follow.
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In Section 3, we make use of the following (slightly) modified version of
Lembke's algorithm. We shall denote by L(A, q) the application of Lemke's
algorithm to (A, g) with the additional proviso that we prematurely terminate
the algorithm when at any stage the ratio test indicates that the basic variable
to become nonbasic is a zvariable. We note that L(A, q) has three mutually
exclusive types of termination, namely solution, ray, and premature termina-
tions. Some properties of L(A, q) are established in Lemma 7.

Lemma 7. The following statements are true when A is a Z-matrix of
order n:

@) L(A, q) terminates in at most n +1 pivot steps.
(ii) (A, q) has a solution = L( A, q) terminates with a solution to (A, q).
(iii) L(A, q) terminates prematurely = A is nol an M-matrix.

Proof. It is easy to see that in LA, q) each row (except the initial pivot
row) can be selected at most once for pivoting. If the initial pivot row is
selected again for pivoting, then z, becomes nonbasic and L(A, q) terminates
with a complementary basic feasible solution. This establishes the validity of
(i) We note that premature termination is ruled out [6, Theorem 3.3 and
Corollary 3.4] when (A, q) has a solution and thus L(A,q) is same a
L(A, g). Since Lemke’s algorithm processes LCPs with Z-matrices [9], the
validity of assertion (ii) follows. The validity of (iii) is a trivial consequence ol
Lemma 6.

We note that cycling cannot occur in L(A,q), and so no degeneracy
resolving mechanism is necessary. The known result that Lemke’s algorithm is
polynomial for M-matrices follows trivially from Lemma 7. The initial pivot
step of i.(A, q) does not involve any multiplications or divisions. There is no
need to update the columns corresponding to w-variables. In view of this,
L(A,q) requires at most n(n +1)2/2 multiplications and divisions and
roughly as many subtractions.

3. ALGORITHM-Z-P-ZERO

We shall now consider the problem of checking whether a given Z-matrix
of order n is also an M-matrix. A finite algorithm to do this is to directy
verify the nonnegativity of principal minors. This algorithm has exponentia
growth rate of computational complexity in the sense that an “yes™ instance
of the problem requires evaluation of 2" —1 determinants. We now give
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ALCORITHM-Z-P-2ERO, Which is polynomial for testing the nonnegativity of
principal minors of Z-matrices.

ALGORITHM-Z-P-ZERO

Step 0. Let A be a given Z-matrix of order n. Put y = (1,2,...,n}, choose
any q € R" such that ¢ <0, and go to step 1.

Step 1. Put 8 =y, and apply the modified version of Lemke's algorithm to
(Aggr G)-

a If I:,(A,,,q,) terminates with a solution, stop; A is an M-ma-
trix,

b. If i,(A,,.q,) has premature termination, stop; A is not an
M-matrix.

c. If L(Ag, qy) has ray termination, go to step 2.

Step2. Let # = (@, 2, Zp)+ (b, £, 25): A 2 0) € R¥¥1*! denote the sec-
ondary ray generated by L(Ag, q). If Z,# 0, stop; A is not an
M-matrix. Otherwise go to step 3.

Step 3. Let a=(j:Z,#0}and B= (j:z"=0)‘ If 8 is empty, stop; A is
an M-matrix. Otherwise put y = 8 and return to step 1.

THeoReM 1. Let A be a Z-matrix of order n. Then ALGORITHM-Z-P-ZERO
verifies whether A is an M-matrix in time O(n*).

Proof. At any stage of the algorithm, we note that the principal subma-
trix Agy at step 1 is a Z-matrix. Using Lemma 5, we see that termination at
step la implies A,y is a nonsingular M-matrix. By Lemma 7 we note that
termination at step 1b implies A, is not an M-matrix. By Lemma 4, we note
that termination at step 2 implies that Ay, is not an M-matrix. Again by
Lemma 4, we see that termination at step 3 implies that A,y is an M-matrix.
If B is nonempty at step 3, we note from Lemma 4 that A, is an M-matrix
and Ag, = 0. Therefore there exists a permutation matrix [1 e R¥IX 5uch
that

aa

A
0 Ap

mam-|

From Lemma 1 we note that Ay, is an M-matrix if and only if 4, is an
M-matrix,. We also observe that |B8| <{8|. Therefore ALGORITHM-z-P-ZERO
requires at most n repeated applications of the modified Lemke's algorithm.
The required assertion is then immediate.
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When A is an irreducible Z-matrix of order n, we note that
ALGORITHM-2-P-ZERO requires a single application of the modified version of
Lemke's algorithm and is thus O(n?) in time.? This suggests that it should be
possible to check in O(n®) time whether any Z-matrix (irreducible or not) is
an M-matrix. We show below that a combination of Tarjan’s depth-first
search method and ALGORITHM-z-P-ZERO for this purpose is indeed O(n®) in
time.

Let A be any reducible Z-matrix of order n. Then there exists a
permutation matrix I such that

Am, Agg, 0 Ag,
MAI' = Ao, A,
0 0 v Ap.,‘

where each A, is either irreducible or a 1-by-1 null matrix. By Lemma 1, A
is an M-matrix if and only if each Ag,g, is an M-matrix. This can be checked
in O(16,1* + - - - +18,]) or in O(n®) time by applying ALGORITHM-Z-P-ZERO to
each Ag,.

The partition of {1,2,...,n) into the sets 8,,8,,...,0, can be done in
O(n?) time by Tarjan's depth-first search algorithm for finding the strongly
connected components of a directed graph [10, p. 155]. For this purpose we
associate a directed graph G =(V, &) with the matrix A as follows. We take
the vertex set V= (1,2,...,n}, and the arc set & to be

&=((1,f):1# jand a,;+0).

We define the equivalence relation ~ on the set V of vertices by i ~ j if and
only if either i = j or there exists a directed path from i to j and also from |
to i. The distinct equivalence classes under this relation are exactly the sets
8,,0,,....8, which form the output of Tarjan’s algorithm.

Finally, let T denote the transition-probability matrix of a homogeneous
Markov chain with state set {1,2,...,n}. For any chain, regardless of its
structure, A=1I-T is an M-matrix [2, p. 226). We can use

In this case, if a={1,2,...,n—1}, then A is sn M-matrix if and only if A;) 20 and
Bpp = AnaAsJA,, 2 0. Inversion of an (n = Iyby{n — 1) matrix requires ns muny as (n - Iy
multiplications and divisions with about the same number of subtractions. In comparison,
ALCORITHM-Z-P-ZERO requires only hall the computstional eifort.
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ALGORITHM-2-P-2ERO with some modifications to analyse the chain to find its
distinct ergodic classes, the set of transient states, and also the stationary
probability distribution vectors associated with the ergodic classes [8].

The author would like to thank the anonymous referees for their construc-

tive criticism and valuable suggestions leading to an effective revision of the
initial version of this paper.
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