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ABSTRACT

It A =(a!), k=12...n are nXn positive semidefinite matrices and if
a:$, = C, where S, is the symmetric group of degree n, an inequality is obtained for
the “mixed Schur function,”

r “(”);(T)'l:[l“:-mvm'

a.7ES,

When the matrices A*, k=1,2,..., n, are all equal, we get some known results due to
Schur as consequences of the inequality. It is also deduced that the mixed diserimi-

it of a set of positive semidefinite matrices exceeds or equals the geometric mean of
therr determinants.

1. INTRODUCTION

If A is a hermitian positive definite (positive semidefinite) matrix, we
write A>0 (A >0). Also, A> B meansthat A>0, B>0,and A-B>0.
The determinant and the permanent of the matrix A will be denoted by |A|
and per A, respectively. As usual, S, denotes the symmetric group of degree
n.and (o) =1or -1 according as o €S, is even or odd.

In this paper we prove some inequalities for “mixed” Schur functions
(this concept will be made precise later). As an example, we state the
folowing, which is a special case of a more general inequality which we
prove.

*This work was done while the author was visiting California State University at Hayward.
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Tueonem ). Let A" =(a})), k=1.2,...,n, be n X n positive semidef.
nite matrices. Then

prl Ze:s H“a(nvu)?— l_I |AX|L/n, (1)
1
ﬁ s, L don n Bopipmny > 1_[ Ak, (i)

The expression on the left-hand side of (ﬁ) has been lenned "mlxad
discriminant” in the lit [1, 8). Analog , the exp
(i) may be thought of as the “mixed permanent™ of the matrices AL A'.
When Al,..., A" are all equal to A, themequahtym(n)specwhzuto!h
well-known recu]l of Schur that if A >0, then perA > |A}

We now introduce some notation. It will be convenient for us to assume
throughout that the el ts of S, have been ordered in the following way: if
6,7€S,, then a precedes 7 if 6~' precedes 7' in the lexicographic
ordering, or equivalently, if the first nonzero difference o~ '(i)=- 17l
i=1,2,..,n, is negative. Thus, the elements of §, are ordered as follows:

123,132,213,312,231,321

Let A*=(a}), k=12...,n, be nXn matrices, and let A'x
A% X -+ X A" be their Kronecker product. Let TI(A,..., A") be the alxa!
matrix defmed as follows. Index the rows as well as the columns o
TI(AY...,A") by S,. If 0,7€S,, then the (0, 7) entry of TI(A',...,A" &
equal to

1 2
oo Gornyriay

It may be verified that II(Al,..., A") is a principal submatrix of A'X
A%X -+ X A" The following result is immediate from this observation.

Lemma 2. If Al,..., A" are hermitian positi idefinite, then so is
I(AL,..., A™).

We now give an example. If A', A%, A® are given by

2.0 0 1 00 2 0 0
A=[o 2 1] A'=[0o 3 2| A=|o 3 -1}
01 3 02 3 0 -1 2
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then
12 -4 0 0 0 o
-4 18 0 0 0 o
1 A2 A3)— 0 0 4 -1 0 O
Nn(A', A% A%) = 0 0 -1 9 o ol
0 0 0 0 12 4
0 0 0 0 4 18

Note that since each A’ is a direct sum of a 1 X1 matrix and a 2x2
matrix, [T( A', A%, A?) turns out to be a direct sum of three 2 X 2 matrices due
to the ordering of S, that we adopt. This observation is used in the proof of
Theorem 6.

When A¥=A, k=1,2,...,n; the matrix II(A%..., A")=TI(A,..., A)
will be denoted simply by TI(A), and this agrees with the notation first
introduced by Soules [10]. The matrix TI(A) has been denoted by A in [2).

In a very important paper, Schur [9] generalized the Hadamard determi-
nant inequality in a substantial way. We now describe two results from that
paper. Let A be an n X n matrix, let G be a subgroup of S, and let A be a
character of G. Define the function

dé(A) = Z A(o) ,lf[lalu(l)'

0€C

The following result from [9] is commonly known as Schur’s inequality,
and it has inspired a great amount of research (see, for example, (4], (5], [6],
[7. Chapter VI)).

TheoreM 3. Let A > 0 be an n X n matrix, let G be a subgroup of S,,
ond let A be a character of G. Then

1 2
) c(A) > Al

Schur derives Theorem 3 by first proving the following result and then
muking use of the fact that (1/A(id)}d}( A) is in the field of values of TT(A).
Infact, if A is the vector of order nl whose ath entry is A(s)/yo(G), then

1 N .
Ty 48(4) =M (A
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THEOREM 4. If A > 0, then |A| is the smallest eigenvalue of TI(A).

It is interesting to note that although Theorem 3 has received a good
amount of attention, Theorem 4 has remained more or less unnoticed. This
point was also made in [2]. In fact, in a 1983 paper, Soules (10] gives
Theorem 4 as an open problem, along with the other (still unsolved) apen
conjecture that if A > 0, then perA is the largest eigenvalue of [1(A). The
result in Theorem 4 has, however, been noted in some works of Marcus [4, 6]
In [4], Marcus gives an alternative proof of Theorem 4 using the Cauchy.
Schwartz inequality. The purpose of the present paper is to show that when
A¥ >0, k=1.2.....n, the matrix TI(A',..., A") dominates a certain diagond
matrix, whose diagonal entries are in terms of the principal minors of
Al,..., A" (see Theorem 6). The result obtained is more general than Theo.
rem 4.

The determinant and the permanent are two of the most extensively
studied functions associated with a matrix. There are various generalizations
of these two functions which appear in the literature. If A is a character o
S, the term “immanant” has been used by Littlewood [3] for the functios
L, es Mo ja,, . If G is a subgroup of S, and if X is a character of C.
then the term “generalized matrix function” or “Schur function™ has been
used to denote the function

dX(A)= ¥ A(")llfll"lam'

0€G

It must be remarked that quite frequently, further restrictions are placel
on the character while defining a generalized matrix function. The typial
restrictions are that the character is irreducible or that it is of degree 1.

If & is an arbitrary function from S, to the complex numbers, then we ue
the term *“mixed Schur function™ to denote

d“(Al--w A")= E a(o)m ,]f[,a:’“"‘“'

o.1€S,
The main inequality that we obtain for mixed Schur functions is statedn
Theorem 7.

2. RESULTS

If Ais an n X n matrix, we denote by A, j=1.2,....n. the principl
submatrix of A formed by deleting the first j rows and the first j columnsd
A. Also, we make the convention that A, = A and that |A,|=1.
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TuEOREM 5. Let A*>0, k=1,2,...,n, be nXn matrices, and let
B*>0 be obtained from A* by replacing a%, with |A*|/|A%| and by
replacing all remaining entries in the first row and the first column of A* with
zeros, k=1,2,...,n. Then

(A,..., A") > TI(B',..., B").

Proof. For k=1,2,...,n, let C* be obtained from A* by replacing a%,
with a¥ — |A*|/)A%]. It is easy to show (see, for example, (2, Theorem 1))
that C¥ > 0. It follows from the definition that

(C,...,C") =TI(A',..., A) —TI(B',..., B")
and the proof is complete, since I1(C%,...,C") > 0 by Lemma 2.

TueoREM 6. Let A*>0, k=1,2,...,n, be nXn matrices, and lot
Z=(zj) be the n X n matrix defined by

1ALl

z‘,—m, i,j=12,..,n.

Furthermore, let D(A,..., A") be the diagonal matrix of order n! with its
o th diagonal entry equal to T1]_,z,,,,. Then

(A,..., A")> D(Al,..., A").

Proof. Using the notation and the conclusion of Theorem 5, we have
T(A',..., A") > TI(B,..., B").
In view of the ordering of S, that we employ, it can be seen that

n Ak
I(B',....3")= & #n(All,Aﬁ,...,A*,-‘,A’;“,...,A';),
k=1[A])

where @ denotes direct sum. Now the result follows by induction.
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Tueorem 7. Let A'>0, i=12,....n, be nXn malrices, and et
a:S, = C. Then

): a(o)a(‘r) I:[a:(l)v(l)z Zs laa|2‘1fllz:uu)» (l)

o, r€S, =1

. n n 1/n
Z afa) af7) 'I:[laI-(nv(n >perZ> "l(kl_l IA‘(]) N (it}

o.v€S, =1
if |e(o) =1 forall 0 €S,

Proof. Let a be the vector of order n! whose ath entry is a(0). Then,
by Theorem 6,

a*TI(A..., A)a> a*D( A',..., AY)a,
and that is (i).
The first inequality in (i) follows immediately from (i). whereas the

second inequality follows by an application of the arithmetic-mean-geomel.
ric-mean inequality, since

” L/nl
perZ> "l[ [1 :mn)
I

and

That completes the proof of the theorem.

Theorem 1 is clearly a simple consequence of Theorem 7. Setting A' =4
and A= .- = A" = B in Theorem 1, we get the following.
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CoroLLARY 8. Let A>0, B> 0 be n X n matrices. Then

T ¥ a, perB(i, j) > n|A|""|BI' ", )
=t j=1

noon

Y X a,|Bli.j)]>nlA]/")B]' V", (i)

v=1je1

where B(i. j) is the submatrix obtained by deleting the ith row and the jth
column of B.

It is a pleasure to thank Professor Russ Merris for taking a careful look at
the first draft of the paper and for his hospitality during my stay in
Hayward.

REFERENCES

I A.D. Alexandrov, On the theory of mixed volumes of convex bodies (in Russian),
Mat. Sb. 3(45):227-251 (1938).

2 R. B. Bapat and V. S. Sunder. An extremal property of the permanent and the

determinant, Linegr Algebra Appl. 76:153-163 (1986).

D. E. Littlewood. The Theory of Group Characters, Oxford U.P., London, 1940.

M. Marcus. On two classical results of I. Schur. Bull. Amer. Math. Soc.

70:685-688 (1964).

M. Marcus and G. W. Soules, Some inequalities for combinatorial matrix func-

tions, J. Combin. Theory 2(2):145- 163 (1967).

M. Marcus, Inequalities for matrix functions of combinatorial interest, SIAM J.

Appl. Math. 17(6):1023- 1031 (1969).

7 R. Merris. Multili Algebra, Monograph Ser., Inst. for the Interdisciplinary
Applications of Algebra and Combinatorics, Univ. of California, Santa Barbara,
1975.

A H. Minc, Theory of permanents 1978-1981, Linear and Muitilinear Algebra
12:227-263 (1983).

9 1. Schur, Uber endliche Gruppen und Hermitesche Formen, Math Z. 1:184-207
(1918).

10 G. W. Soules, Constructing symmetric nonnegative matrices, Linear and Multi-
linear Algebra 13:241-251 (1983).

RSy

@

-3

Revviced 14 June 1985; revised 13 November 1945



	143
	144
	145
	146
	147
	148
	149

