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ABSTRACT

We call a norm on operators or matrices weakly unitarily invariant if its value at
axerator A is not changed by replacing A by U*AU, provided only that U is unitary.
This class includes such norms as the numerical radius. We extend to all such norms
an inequality that bounds the spectral variation when a normal operator A is replaced
by another normal B in terms of the arclength of any normal path from A to B,
eamputed using the norm in question. Related results treat the local metric geometry
of the “manifold” of normal operators. We introduce a representation for weakly
unjtarily invariant matrix norms in terms of function norms over the unit ball, and
identify this correspondence explicitly in certain cases.

1. INTRODUCTION

In the first part of this paper we study a class of norms on complex
atatrices. A norm 7 from this class is characterized by the invariance property

r(A) = r(UAU®) (1.1)
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for all matrices A and all unitary matrices U. We call such a norm weakly
unitarily invariant (wui).
If the norm satisfies the stronger requirement

r(A) =7(UAV) (1)

for all matrices A and all unitary matrices U and V, we shall say in this paper
that 7 is strongly unitarily invariant (sui). Such norms have most often been
called “unitarily invariant” in the literature. We need the adverbs to dis-
tinguish these two classes here. The class of sui norms is properly contained
in the class of wui norms.

In Section 2 we consider several examples of such norms (some “classical”
some more exotic), various ways of generating them, and a few of ther
properties. We prove a theorem which characterizes wui norms in terms o
certain function norms.

In the latter part of the paper we continue our study of the spectrd
variation of matrices, building upon our earlier papers [1], [5]. The main
result can be described as follows. In [1] it was shown that if N(¢), 0 <t <L
is a piecewise smooth path in the space of normal matrices, then for any su
norm 7, the 7-distance between the eigenvalues of N(0) and N(1) is bounded
above by the 7-length of the curve N(¢). (See Section 3 for precise defini-
tions.) Several known spectral variation results were seen to follow from this
theorem. We show in Section 5 that this * path inequality™ can be extended
to the class of all wui norms.

In [5), along with our study of the “short normal path™ geometry of the
unitary matrices, we derived the path inequality, for the operator norm only.
using a different technique that removed the smoothness restriction and some
other technical conditions imposed on the path in [1]. In Section 5 we shal
carry out a similar analysis for the entire class of wui norms. In this approach
some differential geometry of Section 3 is replaced by analysis. This not only
allows us to work without the technical restrictions mentioned above; it also
brings out some interesting local metric properties of the set of normd
matrices.

In Section 4 we point out connections between our work and some results
of Halmos and Bouldin on approximating a normal operator by another with
restricted spectrum.

2. WEAKLY UNITARILY INVARIANT (WUI) NORMS

Let us first fix some notation. We denote by B(C") the space of linex
operators on the vector space C". Unless otherwise specified, the space C'
will be assumed to be equipped with the usual Euclidean inner product and
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norm, i.e., C" is the n-dimensional /; space. Occasionally we shall need to
think of it as an [, space. An operator A will be identified with its matrix
with respect to the standard Cartesian basis for C". The space of n by n
matrices will be denoted by M(n), and the group of unitary matrices by
U(n). We shall drop the parenthetical n when there is no danger of
confusion.

We shall consider several different norms on M(n). The following nota-
tion will be used for them:

J|A]) will always denote the operator bound norm of the operator A on the
Hilbert space .

The norm symbol with a subscript will denote some other norm. Thus for
example the Frobenius norm is defined as

1Al = (tr A*4)2 = ():Ia.,l’)m- @1)
l.]

where A is the matrix with entries a,;.

The symbol m will denote any arlbitrary norm on M(n). The symbol pn
will be reserved for strongly unitarily invariant (sui) norms [see the relation
(1.2)), while 7 will denote any weakly unitarily invariant (wui) norm [i.e., one
satisfying (1.1)]. Note that the norms ||A]| and ||A[| are both sui.

A detailed study of sui norms was made by von Neumann [17] and
Schatten [16). These norms have been used frequently in the study of
theoretical and computational problems. See, in particular, the books by
Gohberg and Krein (10], Hewitt and Ross [13], and Marshall and Olkin [15].

Numerical analysts have often used certain matrix norms which are easy
to compute but which are not unitarily invariant. For example, we can define
the maximal row sum norm, the maximal column sum norm, the maximal

éntry norm, and the total sum norm of a matrix A as, respectively,

1Al ow = m‘ax ?laul- (2.2)
141l = max );la.,|. (23)
lAllpas = maxla, | (2.4)
HAllwe = Zila uk (25)

Each of these norms is easy to compute from the entries of the matrix; none
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of them is a wui norm. The following facts are easy to verify:

(i) 1A||ow is the norm of A as an operator from I to I,
(ii) ||A[|o is the norm of A as an operator from [, to 1,,
(iii) || Allnex is the norm of A as an operator from [, to I,
(iv) ||A|| o is the norm of A as an operator from I to I,.

It is only recently that the family of wui norms has been studied in some
detail. A restricted class of such norms has been analysed by Fong and
Holbrook [8]; some special examples of such norms have been studied in
detail by Fong, Radjavi, and Rosenthal [9]. In the following subsections we
look at wui norms from a somewhat different perspective.

2A. Generation of WUI Norms
We give below some methods of constructing wui norms which are not of
the better-known sui class.

(a) The numerical radius of an operator A on a Hilbert space H is
defined as

w(A) =sup{|(Ar,z)|:x€H, x| =1)}. (2.8)

This defines a norm on the space M(n) =B(C") that is wui but not su.
There is a whole family of such norms associated with “p-dilations” in a
Hilbert space. These give rise to norms w,(A) each of which is wui. A
detailed study of such norms has been made in [8]. We should mention here
that each of these norms w,(A) lies between w(A) and || A|. In particular, i
A is a Hermitian operator, then all these norms coincide with || A][.

(b) The pointwise sum or maximum of any wui seminorm and wui norm
is again a wui norm. Thus, for example, the norm

1(A) = [|Af+ r Al (27)

is a simple example of a norm that is wui but not sui. We shall give a more
comprehensive description of such norms later.
(c) Let m(A) be any norm on M. Define two induced norms as follows:

my(A) = g\::l(Jm(UAU‘), (29

my(A) = j;m(UAU') du, (29)
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where the integration in (2.9) is with respect to any invariant probability
measure on U. If the norm m(A) is wui, then my(A) = myy(A) = m(A).
However, interesting new wui norms are obtained by this procedure if m(A)
is not wui. Thus, each of the norms (2.2)—(2.5) induces a pair of wui norms.

Let us look at some examples of norms generated by the procedures
above. Given an operator A, define

q(A) =sup(|{Ax,p)|:lIxll =lloll =1, {x,¥)=0}.  (2.10)

Then g(A) is a wui seminorm that is not sui. This can be combined with any
wui norm according to procedure (b) above. A specially interesting example
is the norm

Al as, v = max(w(A), g(A)), (2.11)

which is also the norm generated by ||A|,., [defined in (2.4)] via the
procedure (2.8). Note that

1Al = max max|(Ae,e¢,)|,
1Ay = max  max|(Ac,.e)|

where {e,,...,e,} varies over all choices of orthonormal bases in C". This is
ane of the norms studied in some detail in [9).

We should point out that sui norms can be generated by a procedure
analogous to (c) above, starting from wui or arbitrary norms. Specifically, if
7(A) is a wui norm, we may simply use the definitions

t(A) = ll]n:)'(Jf(UA). (2.12)
™(A) =ju-r(UA)dU (2.13)

te obtain sui norms.
For example, the numerical radius w(A) is a wui norm that leads by the
procedure (2.12) to the operator norm

"(A) = UAx,
w'(A) Fé’{;,,ﬁlﬁ’ilK x, )|

) ""“l:ﬁm;llunq'(h-ll)l

= || Al
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In the same spirit, consider the wui norm

k
n(A)= max Y [(Az, 2] (2.19)
=1

{xyeeees )y

where the maximum is taken over all choices of orthonormal k-tuples
{xg,.-., 2} in C". Then

k

(A) = UAx,,
m(A) l'}‘gl(z.l:‘?x.)E;l( 2, 1)

k
= X s,(A) =llAll.

i=1

the kth Ky Fan norm of A [here the s,(A) are the singular values of 4,
written in decreasing order].

This procedure sometimes produces a (sui) norm from a (wui) seminorm.
For example, the wui seminorm [tr A| leads to the trace class norm:

n
= U.
max ftr UA| = max ,)_:l< Az, 1))

= Z": 5(A) =|Ally-
j=1

(The " maximal principles” used in making the above assertions may be found
in Gohberg and Krein [10].)

Finally let us note that we could go from an arbitrary matrix norm m toa
wui norm via (2.8) and then to a sui norm via (2.12). This would be the same
norm as the one defined by

M(4) = max m(UAV). (2.15)

Similarly, applying the procedures (2.9) and (2.13) successively to m would
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lead to the same nomm as is defined by

M(A) =jfm(UAv)dvdv. (2.18)

2B. A Characterization of WUI Norms

We shall now identify a source which generates all wui norms.

Fix n, and let S be the unit sphere in C", consisting of all unit vectors u.
Let C(S) be the linear space of all complex continuous functions on S. The
group U acts naturally on S and hence on C(S). We say that a norm ¢ on
C(S) is a unitarily invariant function norm if it is invariant under this action.
That is,

S(fU)=d(f) (2.17)
forall f€C(S)and U €U.

Let du indicate the normalized Lebesgue measure on S. Since du is
invariant under rotations, the familiar p-norms

» 1/s
(1) =Ufll, = (fif)ldu) " (<p<w) (218
P (f) =11 flloo = max| f(u)] (2.19)

provide natural examples of unitarily invariant function norms.
Given an operator A on C", define the function f, in C(S) by

fulu) = (Au,u), (2.20)
and for @ as above let @’ be defined by
®'(A)=0(£). (2.21)

The map taking A to f, is linear with trivial kemnel, so @’ is certainly a norm
on B(C"). Furthermore, the unitary invariance of ® implies that ®’ is wui:

(U AU) = O(firar) = P(fooU) =@(£,) = ¥'(4).

We shall show that every wui norm on M arises in this way from some
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unitarily invariant function norm on C(S). In some cases we are able to
identify a correspondence between “natural” @ and * patural” matrix norms,
but interesting problems remain in this area.

Let F={f,: Ae€M); this is a finite-dimensional subspace of C(S)
Given a wui norm 7, define ¥, on F by

Do(f2) = 7(A). (222)

Since the map from A to f, is linear and invertible (on F), ®, is a norm on
F, and it is clear that the wui property of 7 means that &, is unitarily
invariant in the sense that

Bo(foU)=@(f) forall feF.

If we can extend @, to a unitarily invariant function norm & defined on all o
C(S), we shall have 7= ®’. Such an extension may be obtained by Hahn-
Banach argument; here are the details.

Consider C(S) as a Banach space with the uniform norm || f]|... The
finite-dimensional subspace F now has two norms @, and ||*||,,. and there
exist constants 0 <a < B <oo such that aff]l,, < ®o(f) <Blfll, for al
f € F. Let G be the set of all linear functionals g on F such that [g(f)|<
&, (f) for all fE€ F. Then, for every f € F, we have ®,(f)=sup{|g(f)I:
g €G). Note that |g(f)| <Bllfllo(8 €EC, f€F). By the Hahn-Banach
theorem each g € G has a linear extension g to C(S) such that |g(f)|<
Bllfll, [f€C(S)). Given feC(S), let 8(f)=sup(1(f)I:g€C). Thi
defines a seminorm on C(S) that coincides with ®, on F. Replace 8( f) with
max(8( f). all fll,). if necessary, to obtain a norm with the same property.
Finally define ® on C(S) by

®(f)=sup{8(f-U):UeU}.

By construction @ is a unitarily invariant function norm extending &, from F
to C(S). It is not clear when such an extension is unique. We have proved the
following.

THEOREM 2.1. A norm t on M is wui exactly when there is some
unitarily invariant function norn ® on C(S) with T = ®’ (as defined by tht
relations (2.20) and (2.21)).
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Remanr.  Since the value of f, is constant on the classes [u] = {€'u:
# € R}, one might replace S in the above discussion by the complex
projective space CP"~! to avold a certain redundancy. At present, we do not
see any advantage to this representation.

It is now natural to ask: what are the wui matrix norms ®; corresponding
to the unitarily invariant function norms defined by (2.18) and (2.19)? It is
elear that

®.,(4) =w(A), (2.23)

the numerical radius of A. We shall also identify ®{. Notice that this is an
ihner product norm on M, arising from the inner product

(XY )g= [fiw)(Fy(u))*du (2.24)

(here we use the notation z* for the complex conjugate of a complex number
z). It is perhaps not surprising that the norm tums out to be related to the
Frobenius norm.

We first identify all wui sesquilinear forms on M. Let (X,Y) be such a
form. By the Riesz representation theorem there exists a linear operator I on
M such that

(X.Y)y=(X,T(Y)),

where (X,Y )¢ stands for the Frobenius inner product tr Y*X. Since our form
is wui, we have for each unitary U

(X, T(Y))e=(X,Y)=(U*XU,U*YU)
=(U*XU,T(U*YU)) . =(X,UT(U*YU)U*),.
it follows that the linear map I' satisfies
T(U*YU) =UT(Y)U (2.25)

foral YeMand U €U.
Our next proposition characterizes all such T'. The proof presented here is
a close relative of an argument suggested by Ken Davidson.
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ProposITION 2.2.  Let T be a linear map from M to itself that satisfies
the relation (2.25). Then T must have the form

T(Y)=aY+b(rY)I
for some scalars a and b.

Proof. Each contraction on C" is a convex combination of unitary
operators (see {11, Problem 136], for example). Using this fact and the
spectral theorem, we have one way to see that every operator Y is a linear
combination of rank one projections.

Let (e),...,e,) be the standard basis in C", and let E,; be the projection
onto the span of e,. Let U be any unitary of the form 1®U,, leaving e, fixed
Such a U commutes with E,,, so that

[(E,) =T(U*E\U) =U°I'(E,,)U,
i.e., U commutes with I'(E,,) as well. Hence, using for example the fact cited
at the beginning of this proof, T'(E,,) commutes with every operator of the
form 1®R, where R is any operator on the space span(e,,...,¢,). It follows
that T'(E,,) must be of the form t®sl,, where t, s € C and I, is the identity
operator on span(é,...,e,). Note that tr E,, = 1, so that
I'(E,) =aEy, + b(0E,)!

with b=s and a =t —s. Now if E is any other rank one projection, there
exists a unitary U such that E=U*E,U. Hence

[(E) =U*T(E,,)U=U*[aE,, + b(wE,\)I|U
=aE+b(trE)I.

Thus the same constants a and b work for each E, and by the first paragraph
of this proof they work for any operator Y.

CoRroLLany 2.3.  Any wut sesquilinear form (X,Y ) on M(n) is a linewr
combination of (X,Y)r and r X (tr Y )*. If (X, Y ) is an inner product, then

(X,Y)=a(X,Y)p+baxX(rY)*

where a, b are real constants, a >0 and b > —a /n.
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Proof. By the proposition and the discussion preceding it there exist
aeomplex constants a, b such that

(X, Yy=(X,aY +b(rY)I),
=a*(X,Y);+b*uX(Y)*.

I (X,Y) is an inner product, @ and b must be real with a > 0. Also note
that

0<(X,X)=a|X||}+ bz X
and
fr X2 = (X, Iy [" < n]| X 2.

Hence b> —a/n.
With the help of this corollary we identify ;.

THEOREM 2.4. Let @] be the wui norm on M(n) associated with the
natural L>norm on C(S). Then

LANZ + A2\ /2
n+n® )

¢4(A)=(

Proof. For the inner product of (2.24) we must have
(X,Y)y=a(X,Y)p+btrX (rY)* (2.26)

for some real a and b. Since the measure in (2.24) is normalized, (I, 1) =1,
80 that

an+bnl=1. (2.27)
New consider the operators E,; defined by E, e, =¢, and E e, =0 (k + §)
(e, E,; is the “matrix unit” whose sole nonzero entry is a 1 in the ijth

place). Note that if A =E, ; and u is any unit vector, then

flu)= ((u,e!)e,. ") = ("-9[>(<"-3n>)‘-
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In this way one sees that
(E.» Eu)s = (Euv Eu)z %)

for all i, j. Choose i # j, and use (2.28), (2.28) to see that a = b. Together
with (2.27) this implies that a = b =1/(n + n?),

We also identify the trace in terms of the functional representation.
ProrosrTiON 2.5. For any A in M(n), tr A = nfs f,(u)du

Proof. By linearity, it is enough to verify the relation for each of the
matrix units E,; (see the proof above). First let us check that [f, =0 when
A =E,; with { + j. Referring again to the last proof, we see that the integrd
is f(u,e;){e, u)du. But there is a unitary U such that Ue =e¢; and
Ue, = — ¢;, so that the invariance of du under U implies that

Jiue e, uydu=— [(u,e,)(e, uydu=0.

Since tr E;, =1, it only remains to check that f|(u,e,)|?>du=1/n. Therear
unitary U taking e, to e; hence all the/|[(u, e,)|*du are equal. Since their
sum is f1ldu, i.e. 1, each must indeed be 1/n.

The proposition allows us to reinterpret Theorem 2.4 in various ways. For
example, we have the following * probabilistic™ interpretation of the Frobenius
norm.

ProrosiTioN 2.8. For any A in M(n),

IAlIz = nE(1£a)*) + n* Var(£,),

where the expectation E and variance Var are computed with respect to the
unitarily invariant probability measure du.

Proof. Compute, using Theorem 2.4, Proposition 2.5, and the standard
relation

il

Var(f)=f|f—ff|n=flf|’—
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2C. The Pinching Inequality
Let P, P,,..., P, be a complete family of mutually orthogonal projections
m C". These projections induce a pinching operator 7 on B(C") defined by

n(A4) = ZRAP, (2.29)
[
Properties of this operator have been studied by Davis [7] and Gohberg and
Krein {10], who call it the diagonal-cell operator. In an appropriate basis for
€", the effect of a pinching is to replace A by a block diagonal matrix 7(A)
consisting of r diagonal blocks whose sizes are the ranks of the projections P,.
This matrix is obtained from A by replacing the entries outside those
diagonal blocks by zeros. A pinching induced by a family of r projections as
in (2.29) will be called an r-pinching.
For j=1,2,....,r—1,put Q;= P + :-- + P, and define a 2-pinching =,
by

""(A) =Q/AQ; +(1 - Q;)A(I _Qj)'
tt is easy to see that the pinching (2.29) can be expressed as
w(A)=m,_,-  mm(A). (2.30)

Thus an r-pinching can be obtained by successively applying 2-pinchings.
One more diagonal cell is pinched off at each stage.

Tueorem 2.7. Every wui norm is diminished by a pinching. That is, if
r is a wui norm and © a pinching on B(C"), then

#(n(A)) <7(A)  forall AcB(C"). (2.31)

Proof. Because of the decomposition (2.30) it suffices to prove (2.31)
when 7 is a 2-pinching. In this case we can write, in an appropriate basis, the

block forms
_|An Ap _{An O
A= [Au Ay ] m(4)= 0 Agp]

Let U be the unitary operator
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where I, and I, are the identity operators of the appropriate sizes. It is easily
seen that m(A) = (A + UAU®). Since 7 is a wui norm, the inequality (2.31)
follows directly from this representation.

Gohberg and Krein {10, p. 82] prove the “pinching inequality” (2.31) for
the class of sui norms. Their proof rests on certain properties of those norms
that are not available in our more general setting.

3. THE PATH INEQUALITY FOR SPECTRAL VARIATION

In this section we shall show that some inequalities for the distance
between eigenvalues of normal matrices that were established in [1] for su
norms can be extended to the class of wui norms. At the same time we shall
rectify a false step in the proof of the main theorem in [1].

For a matrix A, let Eig A denote the unordered n-tuple consisting of the
eigenvalues of A, and let D(A) be a diagonal matrix whose diagonal entries
are the elements of Eig A. Given a wui norm 7, define the r-spectral distance
between A and B by

7(Eig A, Eig B) = min7(D(A) — WD( B)W*), (3.1

where the minimum is taken over all permutation matrices W. Because 7 is
wui, this definition does not depend on the choice of D(A) and defines a
pseudometric on the space M.

If A is Hermitian, let D | (A) denote the diagonal matrix whose diagonal
entries are the eigenvalues of A arranged in decreasing order. It follows from
a famous theorem of Lidskii [14] that, if A, B are any two Hermitian matrices
and p is any sui norm, then

p(Eig A,EigB) =p(D {(A) —DI(B)) (32

and, further,
u(Eig A,Eig B) < p(A — B). (3.3)

In {1] a new proof of (3.3) was given and it was shown that this inequality
holds, more generally, when A, B, and A — B are normal matrices. The
standard method of proving that an inequality of the type p(A) < p(B) holds
simultaneously for all sui norms is to invoke a theorem of Ky Fan saying that
it is only necessary to check the inequality for each of the n Ky Fan norms.
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[See the discussion after (2.14) for definitions.) In [1] estimates for
p(Eig A, Eig B) were first obtained for the class of Ky Fan norms, and then it
was claimed that they can be extended to all sui norms by the above
reasoning. This last argument is quite wrong. Implicit here is the assumption
that in the definition of u(Eig A, Eig B) given by (3.1) the minimum would
be attained at the same permutation matrix W for all p. By (3.2) this is
indeed the case when A, B are both Hermitian, but for arbitrary normal
matrices this is no longer true. [This has been recently observed by Ando and
Bhatia (unpublished).] However, this step in the proof can be avoided. The
method used in [1] then not only gives all the theorems proved there, but
leads also to a stronger result.

TueoReM 3.1. Let 7 be any wui norm on M. Let Ay, A, be any two
normal matrices, and let A:[0,1] =M be any piecewise C' curve such that
A(0)= A, A(l)=A,, and A(t) is a normal matrix for each t. Then

~(Eig Ao, Eig A,) < ['r(4(1)) dt, (3.4)

where A'(t) is the derivative of A(t).

Proof. All the essential details are the same as in [1). We shall only
sketch the proof and point out how s.u. invariance in [1] can be replaced by
w.u. invariance.

We recall from [1] the basic decomposition
M=T0,02Z,, (3.5)
valid for every normal matrix A, where T,0, is the tangent space at A to the
similarity orbit O, of the matrix A, and Z, is the commutant of A in M.
If A and B commute, then we can find a U €U such that UAU* and

UBU* are both upper triangular. The diagonal entries of these triangular
matrices are the eigenvalues of A and B, respectively. Thus the pinching

imequality (2.31) implies
r(EigA,EigB)<r(A—-B) if [A,B]=0. (3.8)
Also, we have, trivially,
r(EigA,EigB)=0 if BeO,. (3.7)

Now we estimate the spectral variation along the two components in (3.5)
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separately using (3.8) and (3.7). For the given path A(t) consider th
decomposition

M =T, (\Oa® Z sy

for each ¢. Let P!V and P'® be the complementary projection operators i
M corresponding to the above direct sum decomposition. Arguing as in 1]
we obtain

r(Eig Ao, Eig A,) < [7(B®A(1)) de.

We now claim that
T(P®B) < 7(B) forall BeM.

Since 7 is wui and A(¢) normal, we may assume without loss of generality
that A(t) is diagonal. Then Z,,,, consists of block diagonal matrices, and
P®(B) is the pinching of B by the spectral projections of A(t). Thus ou
claim follows from the pinching inequality. This proves the theorem.

We must warn the reader that we have left out some technical detaik
here, since they are the same as in [1]. Notably, the idea works first in
“generic” case and is then extended.

As a consequence we have the following result.

Tueorem 3.2. If A, A, are normal matrices such that A, — A, is alo
normal, then for every wul norm 1 we have

r(Eig Ap.Eig A|) < 7(A,— A)).

Note that the conditions of the theorem are surely met if A, A, ar
Hermitian. The famous Lidskil inequality is thus included in Th 32

Notice that the right-hand side of (3.4) is the length of the path A(t) in
the norm 1. In Section 5 we shall prove the path inequality using a different
method that also works for nondifferentiable paths.
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4. ON A THEOREM OF HALMOS AND BOULDIN

In [11] Halmos considered the following problem. Let K be a closed
nonempty set in C. Let N denote the set of all normal operators acting in
some fixed Hilbert space H, and let N(K) be those elements of N whose
spectrum is contained in K. Then, given an element A of N, which is the
element of N(K) closest to A? He answered this question when the distance
between operators is measured by the operator norm. Bouldin (6] showed
that the same best approximant works for the distance as measured by any
Schatten p-norm with p > 2. In this section we point out the connection
between these results and the problem of spectral variation in finite dimen-
sions.

The Halmos-Bouldin result can be described as follows. A map F:C — K
is called here a retraction onto K if it maps each point of C to a point in K
which is as close as possible [i.e., |z — F(z)| <|z — w| for all w € K]. For
every nonempty closed set there is a Borel measurable F with the above

roperty. The Halmos-Bouldin theorem states that for every AEN and
v e N(K)

IA-F(A)l,<lA=-N|, (4.1)

for all Schatten p-norms (|||, with p > 2. The p = a0 case treats the operator
norm and was proved by Halmos. Bouldin established the case 2 < p <co.
[The statement (4.1) has to be interpreted to mean that if there exists
N € N(K) such that A — N is in the Schatten p-class, then F(A) also has
this property and (4.1) holds. In finite dimensions this qualification is
redundant.]

We next point out some consequences for spectral variation.

ProrosiTion 4.1.  Let A, BEN(n), the set of n by n normal matrices.
Let «a,,...,a, and B,,...,B, be the respective eigenvalues of A and B.
Suppose there is a permutation o such that

laty = By < latg = Bagyp (4.2)
for all i, j. Then for every Schatten p-nom, p > 2, we have

|(Eig A,Eig B) ||, <A — Bll,. (4.3)
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Proof. Let K= (B,....,B,)- Then (4.2) lets us define a retraction F
onto K by the relation F(a,) = 8,,,- Thus, by (4.1),

n 1/p
[ Y e - B.(.,I’) <||A- B,
(=1

which implies (4.3).

We should remark that the condition (4.2) is very stringent, so that
Proposition 4.1 fails to cover many situations where (4.3) is nevertheless
known to hold. Consider for example the Hermitian case where {a;, a,) =
(1,10) and (B, 8,) = (9.12).

However, for A and B sufficiently close we can always appeal to
Proposition 4.1 in the following sense.

ProposITION 4.2. Let B be a normal matrix with eigenvalues B,,..., B,
Let & be the minimum of |8, — By| with B, # B;. and let A be any nomul
matrix such that ||A — B|| < 8/6. Then the eigenvalues of A and B satisfy
(4.2) and hence (4.3).

Proof. It follows from Theorem 5.1 in [3] that there exist a universal
constant ¢ and a permutation o such that

la; — Boiyl < cllA— B for all §.

It has been shown in [2] that this constant c is smaller than 3, so that our
hypothesis implies that |a,— B, <8/2 for all i. We could not have
o, — ﬁa(l)l <|a;— ﬁo(l)l: for then 0 < |ﬁa(’) - Ba(l)l <é.

With the last proposition we can derive the path inequality for spectral
variation as in [5). Let N(t), 0 <t <1, be a continuous path in N. Given any
wui norm 7, define the r-length of this path by

L,(N(-)) =sup{ 7(N(t,,,) = N(,)):0=to<t, < --- <, =1}
(4.4)

Using Proposition 4.2 and following the argument of Theorem 2.2 in [5), we
have

l|(Eig N(0), Eig N(1)} ll, < Ly.aom(N(+)) (45)
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for every Schatten p-norm with p > 2. The method of {5] will be reviewed in
detail in the course of the next section. For the present we have an alternate
proof of Theorem 3.1 for general paths but within a special class of norms.
We end this section by pointing out that the F(A) of Halmos and
Bouldin is not a best approximant to A from N(K) for the Schatten p-norms
with 1< p < 2. In fact, no function of A can be such an approximant.
To see this let K= (i, —i}, and let

e[ g ol A}l

Then N € N(K) and ||A — N||, = 2 for all Schatten p-norms. If F(A) is any
function of A with spectrum contained in K, then in some orthonormal basis,
A can be written as a diagonal matrix with entries 1 and - 1, while F(A) is
diagonal with entries in {i, —i}. Hence [|A — F(A)]|, is 2'/2*!/%, which is
larger than 2 for p < 2.

Note that in the example above both A and N were unitary; even in this
restricted setting F(A) is not a best approximant to A for p > 2. A “worse”
example can be found in [3].

5. LOCAL METRIC GEOMETRY OF N
AND THE PATH INEQUALITY

Here we establish some results on the behavior of spectral variaton and
normal paths in the neighborhood of a given normal operator. This will tell us
about the local metric geometry of the normal manifold N and will allow us
to extend our path inequality to the broadest context.

ProrosiTion 5.1. For a fixed normal N, let 8 be half the minimum
distance between distinct eigenvalues of N,. Then there exists a finite M
(depending only on & and the dimension n of the space) such that any
normal N, with ||N;, — N,|| < 8/3 can be represented as N, = UN,U*, where
N, is a (normal) operator commuting with N,, and U is unitary with
I~ U|l < M||N; — Nol.

Proof. With respect to an appropriate basis we may write N, as a
diagonal matrix D, = @ a,I,, where the a, are distinct eigenvalues and the
I, are identity submatrices of the appropriate dimensions. Now § will be half
the minimum distance between distinct a,’s. By the arguments of Proposi-
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tion 4.2, our condition on N, means that the eigenvalues of N, can be
grouped into diagonal blocks B, of the same dimensions as the I, in sucha
way that every eigenvalue in B, is within 8 of a,. By our choice of § we
have ensured that

"(Bj -a)"! “ <1/8  whenever j#k. (5.0)

For the appropriate unitary matrix W we have N, represented by WD,W*,
where D, = @ B,. If the corresponding block form of W is [W, ], we have

[ Wi, (B, - @)] | = IWD; ~ DW || = [WDW* - Dylj = N, — Noll. (5

From (5.1) and (5.2) it follows that ||Wj,|| < (|N, — Nyli/8 whenever j#k
We conclude that for some M’ (depending only on § and the dimension of
the space) |[W — @ W,,|l < M’||N, — Ny|| whenever ||N, — Ny|| < 8/3.

Now let W, be the unitary part (in the polar decomposition) of W,,, so
that Wy, = |W,,|W,. Since ||Wy, — Will = [ |Wiil = Lill < [ IWisl® = Lll, we
have |®W,,— ®W, | <|(DW,,)* DW,, —I|. Setting V=D W, and X
= ®W,,, we have ||X — V|| <||X*X — W*W||and ||W - X|| < M’||N, — Ny||
Noting that the pinching inequality ensures that || X|| < 1, we have

W =VII<||W=X|[+[X - V|| <||W—X|I+ |[X*X - W*W]||
<IW = XJI+[I(X* - W) X[+ [W*(X - W)
< 3||W - X[l < BM|IN; — Noll-
With U=WV* and M =3M’, the inequality of the lemma is satisfied

Furthermore, if N, is the operator represented by VD,V*, we have N =
UN,U*; N, certainly commutes with N,, since it has the form @ W, B,(W,)".

ProrostTION 5.2. For fixed wui norm 7, normal N,, and ¢ > 0,
(Eig N\, Eig Np) < (1+ €)7(N, — N)

whenever N, is normal and sufficiently close to Np.
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Proof. Let U and N, be as in Proposition 5.1. Since N, and N;
epmmute, we may represent them simultaneously by diagonal matrices Cy
and Cy. Let S=U—1I,sothat U=1+8S, U*=1-S+ S2U*, and

Ny — Ny =G, — Gy + ;S — SC, — UC,5%U* + 8C,S.
It follows that
1(Co — Gy + CoS — SC,) < 7(N, — N,) + r(UC,S%U* ~ SC,8). (5.3)

$ince T is equivalent to the operator norm, there is some constant r such that
all ratios 7(T)/||T|| lie in [1/r, r]. Thus the second term on the right of (5.3)
is bounded by 2r||C,| ||S||%. The diagonal of C,S — SC; is empty, so that the
pinching inequality ensures that

1(Cy = C;) < 7(Cy— Cy + C,S — SCy). (5.4)
Thus (5.3) implies that

7(Eig N,,Eig N, ) < 7(N, — Ny ) +2r([NyJI{ tMT(N, — Ny) )%,

where M is the constant in Proposition (5.1). If N, is (also) so close to N,
that 2r*M2||N,||7(N, — N,) <, the inequality of our proposition is satisfied.

ReEmark 5.3. As noted in Proposition 4.2, Bouldin's theorem implies that
if 7 is any of the Schatten p-norms with p > 2, then Proposition 5.2 remains
valid with ¢ = 0. Nevertheless, we must retain the condition ¢ > 0 in general.
To see this consider the unitary operators

ule) = [e(:‘ (l)]

It is evident that o(U(t)) = (e"/%, — e"/*}. Clearly, then, if w(T) denotes
the numerical radius of T and 0 < ¢ < o, we have

w(Eig U(t), EigU(0)) = |1 — ¢"/®| = 2sin(t/4).

On the other hand, w(U(t)—U(0)) is easily seen to be |e" —1|/2, ie.,
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sin(¢/2). Although U(t) approaches U(0) as ¢ tends to O, the ratio

w(Eig U(t),Eig U(0)) =sec(t)

w(U(t) - U(0)) 4

exceeds 1. The same ratio is obtained for the trace norm, so that we must
generally retain the condition ¢ > 0 in Proposition 5.2 even for sui norms.

We are now in a position to prove the most general path inequality by a
modification of the method used in [5].

TueoreM 5.4. For any wui norm 1 and any (continuous) normal path
N(-) (defined on [0, 1]), we have the path inequality

7(Eig N(0),Eig N(1)) < L,(N(-)).
Proof. 1t is clearly enough to prove the inequality
(Eig N(0),Eig N(1)) < (1+ ¢)L,(N(-)),

for each ¢ > 0. Let N,(-) denote the part of the path defined on [0, ¢], and let
G = {t: 7(Eig N(t), Eig N(0)) < (1 + ¢)L,(N,(*))}; we must show that I is in
G. Let g = sup G. By the continuity of N(-) and of spectra, g belongs to G.
If g were less than 1, we could find, in view of Proposition 5.2 [applied with
N, = N(g)), some ¢t > g such that t(Eig N(t),Eig N(g)) is not more than
(1+ €)7(N(t) — N(g)). But then we would have, since the spectral distance
is a pseudometric,

(Eig N(t),Eig N(0))
< 7(Eig N(g),Eig N(0)) + =(Eig N(t), Eig N(g))
< (1+){L,(N,(-))+ r(N(t) - N(g))}
< (1+¢)L,(N(")).

i.e., t €G, a contradiction.

In [5] we showed that for the operator norm some parts of the normal
manifold N are metrically flat. These were called “plains™ in [5]. Here we
shall say that a subset Y of normal operators is 7-flat if every pair of operators
Ng. N, in Y can be joined by a path N(-) lying in Y that is r-short, i.e., such
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that L (N(:)) = 7(N,— N,). In [5] we saw that the set of scalar multiples of
unitary operators, CU, is |- |-lat, but it is known that the normal manifold as
a whole is not ||-|Hlat for dimension > 3.

For other norms, flatness it is still more rare. For the Frobenius norm, for
example, the geometry is Euclidean, so that normals N, and N, can lie in a
flat subset only if the line segment joining them consists of normal operators;
this is equivalent to requiring that N, — N, be normal. With this norm, then,
not even CU is flat; the examples of Remark 5.3 also illustrate this phenome-
non.
From Proposition 5.1 we can nevertheless conclude that the whole normal
manifold is ““locally asymptotically r-flat” for any wui 7. More precisely, we
have the following proposition.

ProrosrTION 5.5.  For a fixed wui norm r, normal N,, and € > 0, there
1s a normal path N(-) from N, to N, such that L (N(-)) < (1+ ¢)7(N, - N,)
whenever N, is normal and sufficiently close to N,.

Proof. Every unitary matrix U can be expressed as U = eX, where K is a
skew-Hermitian matrix with [|K|| < (w/2)|[I — U|| (see (3)). Hence Proposi-
tion 5.1 implies that there is a constant M such that if N, is a normal
sufficiently close to N, then we may represent N, N, simultaneously by D,,
8XD,eX, where Dy, D, are diagonal and K is skew-Hermitian with ||K]| <
M(IN, = Nyl

For 0<t <1, let D(¢)=(1—t)Dy+tD,, and let N(t) =e'*D(t)e "X
Then N(-) is a path in N. Now

L(N()) = [Pr(N () de
=jo‘f(e"<[xo(¢)+nf(¢) —D()K]e™"%) dt.
Note that
KD(t)+ D'(t) — D(t)K
=(1-t)(D, - D, + KD, — D,K)+t(D,— D, + KD, — D,K).
Since 7 is a wui norm, this gives
L(N(-)) < [ {(1=)7(D;~ Dy + KD, ~ D,K)

+tr(D,- Do+ KD,— D,K)}dt.  (5.5)
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By the usual power series expansion
D, — D, + KD, — DyK = D, — e~ *Dye* + HOT

where HOT stands for higher order terms that involve at least two factors of
K. Routine estimates with the operator norm, the bound ||K|j < M||N, — Ny||
and the equivalence of T with ||-|| show that there is a constant M’ such that
7(HOT) < M'7%(N, — N,). Thus

7(D,— Dy + KDy — D,K) < 7(D, — e"XDye* ) + M'z3(N, - N,)
= {1+ M'7(N, — Np)} (N, - N,).

The second term in the integrand on the right side of (5.5) can be estimated
similarly. Together, these estimates show that

L,(N(+)) < {1+ M'7(N, - No)} 7(N, - Ny).

If we require N, to be so close to N, that we also have M'7(N, — Np) <¢,
then the inequality of our proposition is assured.

Remark 5.8. In general, we must retain the condition €> 0 in the
proposition above. Indeed, if the proposition is true with ¢ =0, then, by
Theorem 5.4, we have 7(Eig N, Eig N,) < 7(N, — N;) for all normal N,
sufficiently close to N,. As we noted in Remark 5.3, this is not generally the
case.
Finally we note that local spectral perturbation is especially well behaved
for the operator norm. The following proposition may be compared with
Proposition 2.1 in [5].

ProrosrTion 5.7. Let N, be a fixed normal matrix. Then for eveny
matrix T (normal or not) in a certain small neighborhood of N, we have

|(Eig N,,Eig T) || < [IN, — Ti.

Proof. Let a,,...,a, be the eigenvalues of N,, and let § be half the
minimum distance between distinct a,. By general results on spectral per-
turbation (see e.g. [4]), if I is sufficiently close to N,, there is a matching to
the a; with the eigenvalues 8, of T such that |8, — a,| < § for all k. By our
choice of 8, it is clear that |8, — a,| is smallest when j = k. Choosing u to be
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a unit eigenvector of T belonging to 8, and an orthonormal basis u, such
that Nyu, = a,u), we have u=Z(u,u;)u,, so that 1 =T(u, u,)|* and

(T~ Ny)u= g(ﬂk_ “1)<“=“;)“r

R follows that

2 2
1B — oyl < LIB = a|®(u upd| = (T = No)u|” < T - Ny|l%
J

Since this holds for each k, we have in fact |(Eig Ny, Eig T)|| < ||T — Npjl-
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