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ABSTRACT

In this work the group inverse of a matrix is used to define the #-order on square
matrices of index 1. The #-order is similar to the ¢ -order of Drazin [2] and the minus
r of Hartwig (6, 10) and Nambooripad (17]. The #-order and the e-order are
ompared and contrasted. Many conditions are given which assure the equivalence of
the various partial orders studied.

L INTRODUCTION AND PRELIMINARIES

Matrices are denoted by capital letters, column vectors by lowercase
letters. For a matrix A, the symbols #(A), #(A), and A’ denote the
coumn span, null space, and transpose of A. # " represents the vector
space of n-tuples (column vectors), and $F™*" the vector space of matrices
of order m X n, defined on a Held #. For a complex matrix A, A* denotes
its compl jugate transpose. Two sub, of a vector space are said to
be virtually disjoint if they have only the null vector in common. B = A&(B
- A) means Rank B = Rank A + Rank(B — A) and is read as “A and B— A
we disjoint.” A~ denotes a generalized inverse (g-inverse) of A, that is, a
solution G of the matrix equation AGA = A. The reflexive g-inverse A, of A
is a solution G of the pair of equations AGA = A, GAG =G. A ginverse of
Awhich commutes with A is denoted by AZ,. For a complex matrix A, a
minimum norm g-inverse A, is a matrix G that satisfies the pair of equations
AGA=A, (GA)* = GA. A least square g-inverse A; is similarly defined
through the equations AGA = A, (AG)* = AG. The Moore-Penrose inverse
A% is the unique solution G of the simult matrix equations

ACA=A, GAC=G, (AG)'=AG, (GA)*=CA.
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18 SUJIT KUMAR MRy

{ A~} represents the class of all g-inverses of A; {A;,), (A7), dean
similarly interpreted.
A, A}, A, are defined as follows:

{an)=(4az)n{Ar),
(AR) = (A7 )n{a7),
{An)={A7}n{Aa]}.
When a square matrix is of index 1, that is
Rank A = Rank( A?), 1]

it was shown by Englefield (4] that there exists an unique reflexive ginvers
of A which commutes with A. This was denoted by A ;. The same result va
independently obtained by Erdelyi [5), who named this unique g-inverse e
group inverse because the conditions imposed in the definition of his uniqe
inverse are precisely those that ensure that the matrix A belongs o3
multiplicative group. The group inverse of A is denoted by A™, Arghiriade(l]
and Pearl (18] gave necessary and sufficient conditions for a matrix 4 ©
commute with its Moore-Penrose inverse A*. When it does, A* will b
coincide with A®.

The author [14], who was i d in obtaining g-i G of Awid
specified row and column spans, discovered the same g-inverse. In (14]ité
shown that A® satisfies the conditions

#(G)c #(A) o
H(C')C H(A). 0

This g-inverse is denoted Az;, R and C signifying row and colum
restrictions. One can adopt the equations

AGA=A, GAG =G, AG=GA l

as the definition of the group inverse, as is done by Englefield |4] and Erdt
[5], and deduce (2) and (3). Alternatively, one can use AGA = A togetin
with (2) and (3) as the definition and deduce (4), as is done in [14]. It vz
shown in [14] that a g-inverse satisfying any one of the two restrictions
and (3) exists if and only if the matrix A is of index 1. These ivess
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(denoted by Az and Aj respectively), though not unique, share several
properties with Apc and are computationally somewhat simpler. In [14],
further, explicit algebraic expressions for A5, Ag are given; in particular it is
shown that

Apc=A(A%)" A )

Robert [21) proposes the following equivalent definition for the group
inverse. Let X be a linear space, and A a linear transformation of X into
itsell. Let #(A) and #'(A) denote respectively the range and nullspace of
A When X = R(A)®A(A), A" is the linear transformation mapping X
onto #(A) such that AA® is the projector on #(A) along #'(A). Thus some
of the results in (14] and [21] have been developed in parallel.

In a star semigroup with a proper involution (denoted by ), Drazin [2]
introduced the concept of a star order which in the context of complex
patrices of order m X n could be stated as follows: we define A < B to mean

BA* = AA*, A*B=A"A. (6)

Jt was shown that (8) is equivalent to the following definition:
AIB if BA*=AA*, A*B=A‘A. ()

Hartwig (6] and independently Nambooripad [17) introduced another
partial order by weakening the requirement given in (6) or (7). This partial
order, first called the plus order in (6] and later renamed the minus order in
"10), is defined as follows: We write A < B whenever

BA™ =AA", A B=A"A (8)
for some generalized inverse A~ of A. Clearly

AXB = AZB. (9

Hantwig and Styan [10]. state ten conditions, each one of which, together
«ith A2 B, implies A < B. Additional conditions will be presented in this
paper. Another goal of this paper is to introduce the sharp order through the
uhique group inverse.
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We write A < B if A and B are square matrices of index 1 and
BA"=AA", A"B=A"A. 1y

It is shown in Hartwig and Luh [9, p. 12] that in a strongly regular ring (i
and (8) are equivalent. We note that the minus order and the sharp order
could be defined for matrices on any field, unlike the star order, which s
given in (8) or (7) requires the field to be real or complex. This distinctioa
must be kept in mind when stating and proving results about the partid
orders. Normally the choice of field is clear from the context.

DeriniTion (18], A pair of matrices A and B of the same order is i
to be parallel summable (p.s.) if A(A + B)~ B is invariant under the choiced
the g-inverse (A + B)~. When A and B are p.s., A(A+ B)™ B is called lie
parallel sum of A and B and denoted by the symbol P(A, B).

2. PROPERTIES OF THE STAR AND SHARP ORDERS

The equivalence of (a) and (b) in Lemma 2.1 below is due to Hartwig |6
The remaining equivalences are trivial; see the proof of Lemma 1.2 in Mitn
and Odell [16] in this regard.

Lemma 2.1, The following stat ts are fvalent

AZB, (1l
B=Ae(B-A), (it
P(A,B—A)=0. (g

Lemma 2.2. When the matrix A is of index 1, the condition (10} i
equivalent to the following condition:

BA = A®= AB. (3

Proof. Since AA%= AA®A = A%A®= A, clearly (10) = (12). That (1%)=
(10) is a simple consequence of (5).

Thus the condition (12) could replace (10) in the definition of the
order. It is shown by Drazin [3] that in a finite semigroup a necessary
sufficient condition for a®=ab=ba to define a partial order is that

group is quasi: tive.
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Lowma 2.3.

) AR B ifand only if (B~ A)Z B.
) A < B if and only if (B— A) < B.
(©) A< B ifand only if (B— A) < B.

Proof. (a), (b), and (c) follow respectively from Lemma 2.1, (6), and
12}

Note that (12) = B?=A%+(B— A)? and A < B= AZB. Hence, in
wewof (11), if A and B are of index 1, sois B — A.

TreoreM 2.1.
a) AR B if and only if

(B~}c{A™). (13)

(b) A < B if and only if
(B2Yc(Az), (Bi)c(Ar). (14)

(© A< Bifand only if

(Bam) € {(Awm}- (15)
Proof. (a) and (b) are proved in [15].

For the “only if”" part of (c), clearly 4 < B= ATB= (B )C (A7)
= B=A®(B- A). Let B, be an arbitrary commuting g-inverse of B;
then BB, = BB™ is the unique projector projecting onto .#(B) along
#(B). Since AA” is the projector onto #(A) along #(A) and (B - A)
(8- A)" is the projector onto #(B — A) along #(B — A), (12) implies that
AA"+(B— AYB - A)" is the projector onto #/(B) along A (A)N A(B —
A)=#(B). Hence BBZ, = AB_ +(B— A)Bg.= AA®+(B— A)B—
AF=A"+(B— AY(B - A)=B_,A+BL(B—A). Since .#(A) and
(B~ A) are virtually disjoint, and so are #(A’) and A[(B— A)’), this
implies

ABZ, = AA®= A%A =B A.
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Thus Bg,, which belongs to {B™) and hence to (A~ ), is indeed 2
commuting g-inverse of A, and hence {Bg, ) C (AL, )
For the “if" part, assume now that (15) holds. Then B*&(AL,). W

now show that (15) = (13). To avoid triviality assume that B is smgulm
Observe that {Bg,} = {B*+(I— B*B)U(I - BB*), U arbitrary). Thes
(Baom) € {4~} = A(I-B*B)U(1 - BB*)A =0, which in tum impls
that A(I — B®B) or (I — BB®)A is a null matrix. Without loss of generality
let (I — BB®™)A be null and A(I — B®B) be nonnull. Choose and fix U such
that

A(I - B*B)U(I — BB¥) 0.
For this choice of U, B®+(I— B"B)U(I—BB")& (Bg,)C (A"} bu

€ (ALa), since [B®+(I— B"B)U(I — BB®)|A = B"A = AB® + A[8"+
(I — B*B)U(I — BB™)), which contradicts our assumption that

(Bam} e {A5n)
Hence A(I — B®B) is also null, which implies
(B~} = {B*+(I- B*B)U+V(I— BB*), U,V arbitrary} c {A"}
therefore
P(A,B—A)=0.
Here we have used Theorem 2.1(a) and Lemma 2.1 respectively. Then
P(A,B—A)=AB~(B— A)=AB.(B-A)
=B A(B-4)=0
= AB, A(B—A)=A(B-A4)=0.
Similarly
P(B—A,A)=P(A,B—A)=0
= (B-A)B;,A=(B-A)AB;,=0
= (B-A)AB; A=(B-A)A=Q = A<B

This completes the proof.
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In our next theorem we give conditions which specify when the minus
ad the star order coincide.

Tueorem 2.2, The following stak ts are equivall

(a)AzB:
(b} AR B, and for some C, € (A}

G,+(B-A) e (B ); (18)
{c) A< B, and for some G, € (A} )
G,+(B-A) e{B™). (1)

Proof. We shall first establish the equivalence of (a) and (b). That
1a)=(b) follows straightforwardly from (9), (6), (11), and the explicit expres-
son for the Moore-Penrose inverse

A* = A*(A®AA*) T A
gven in (13, p. 111]. Note that if (a) holds,
B[A* +(B-A)"| = AA*+(B- A)(B-A)",
[A*+(B-A)'|B=A*A+(B-A) (B-A)
are both hermitian, and further
B[A*+(B-A)*|B=AA*A+(B—A)(B-A)'(B—A)=B.
Then
Rank B < Rank[A* +(B—A)"] < Rank A* +Rank(B - A)*
= Rank A +Rank(B — A) = Rank B,
which in tum implies

A*+(B-A)'=B"
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Another proof of the proposition that A B implies A* +(B—A)*=5*
appears in Hartwig and Styan (10].
(by=(a): AXB if and only if (B~} C {A”~ ) [Theorem 2.1(a)). Hence
G,+(B-A)*e (B }c(Aa).
Since G, € { A™ )}, this implies
A(B-A) A=0.

In Lemma 2.1 we have noted that A B « P(B— A, A)=P(A,B-A)=
0. But then

P(B—A,A)=(B-A)B A=(B—A)[G,+(B~A)']A=0
= [(B-4)']*[c,+(B-4)"]A=0
o [(B-A)']*A*Ge+[(B-A)*]*(B-A) A=0.
= A*[(B-A)']*(B-A)'A=0
o (B-A)"A=0
o (B-A)*A=(B-A)*(B-A)(B-A)'A=0
= (B-A)G,A=0
= (B—A)A*=(B-A)G,AA* =0,

whence (B— A)*A =0, (B— A)A* =0 = (a).
(a) == (c): We have noted earlier in this proof that (a) implies A < B and
A*+(B-A)*=B",
which in turn implies (c)
(c)=(a): ((B7)*}={(B*)"}, [(B—A)']*=[(B~A)|" ad

{(A7)*} = {(A*). }; see [19, Theorem 3.2.4]. Further, AR B & A*Z8".
Hence, in view of the equivalence of (a) and (b),

(©) = A*3IB* = (a)
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Reuark 1. Theorem 2.2 is not true if the Moore-Penrose inverse (B —
4)* in conditions (b) and (c) is replaced either by (B - A),, or by
1B~ A), or even by (B — A);, . Consider for example

1 0 aefl ) eae(t )
Clearly A 2 B. Observe that
(o o)eany. (.3 })etz-a))
and
(o o)+(=2 D= 3)-5

However (B — A)*A # 0. Hence A ; B.
Similarly consider

efy S el 2wl )

Clearly A< B,

[ Yo (2 Yelo-mi)

£ 208 96 8-

Futher, (B~ A)A* #0 = A % B. Finally,

(1
2
-1
2

and the two matrices sum to

1
i) € ((B-A)m),

o oh

€ (A} [

T

3 9o
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Remark 2. Theorem 2.2 exhibits the equivalence of (v), (vi), and (w)
with (i) in Theorem 2 of Hartwig and Styan [10]. Along with Remark 1.t
shows perfectly the extent to which the equivalence depends on the Moo
Penrose inverses, an open problem raised in [10). The proof of Theorem 22
an algebraic proof of the equival of (vi) and (i), thus answering another
question which is raised in [10].

Remanrx 3. A result similar to Theorem 2.2 is not available for the shap
order. To see this, let S and T’ be nonnull matrices of the same order withat
least two rows and columns, such that

ST =0, 7S=0.

The matrices
_(1 s _a_[0 0
A [T 0)' B-4 (0 —I) (i
add up to
(1 S
B'[r —1]'

which is an involution. A and A — B are idempotent; hence A"=3,
(B— A)*=(B—- A),and A*+(B— A)*= B*. Clearly A T B. However,

E ]
A(B—A)=(8 _()s)$0 and A8

THEOREM 2.3.

(8) If ASB then ASB and BA*B=A. Conversely, AZB od
M(BA*B)YC #(A), M[(BA*BY]|C H(A") imply

ALB.

(b) If A < B, then A 2 B and BA"B = A. Conversely, A2 B, B of indn
1, and #(BA"B)C M(A), A((BABY) = H(A’), imply

”®
A <B.
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Proof. Part (a) was proved in Hartwig and Styan [10, Theorem 2]. For
part (b), first, A : B = A < B follows from the definitions of the minus and
the sharp orders. Next, BA"B = A is a consequence of (10). Now assume
A2 Band .#(BA"B)C #(A) hold. By Theorem 1(a), since A 2 B, we have
{B")Cc{A"}),soV(I-BB )A=0, A(] - B~ B)U =0 for arbitrary U and
V" and arbitrary choice of B~, whence A= BB~A = AB~ B. Then

AIB = AB"A=A, A=BB"A=AB"B (19)
and
MH(BAB)C #(A) = AA"BA®B=BA"B
= AB%AA"BA"B) = AB*(BA"B)
= AA®BA"B = AA"B = BA"B
= AA®B(B®A)= BA®B(B"A)
= A=AA"A=BA"A = AA"=BA".
Similarly,
A [(BA®BY| c#(A’), ARZB
- 4|B(a)B|can), azm
= A(4)"=B(&)"= A(A") = B’ (A"
= A%A=A"B.
THEOREM 2.4,

(a) If A < B, then AT B and B*AB* = A*. Conversely, if AR B and
#(B*AB*)C M(A*), A|(B*AB*Y)C H[(A"), then

A<B.
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(b) If A <B, then A2 B and B*AB®= A®. Conversely, if A B ond
M(B°AB*) C A(A®), H[(B*AB®)'| C H[(A¥Y), then

re-3:

Proof. The kirst part of (a) was proved in [10]. We next prove both pars
of (b), and this will suggest a proof of the converse part of (a).
From (2), (3), and (12) it is seen that

ASB = (B-A)A"=A(B—A)"=A%(B—A)=(B—A)"A=0
= B[a*+(B-A)" =Aa"+(B-A)(B-A)"
= A"+(B-A)"e(B"). ()

Further, #[A®+(B— A)®)C 4(B), #[{A®+(B—- A)*))c 4(B)
Hence

A*+(B-A)*=B" (@)
£ ]
and A < B is seen to imply
A< (2
Thus B®AB® = A®AA® = A®. We have already seen
#

A<B = ARB.

Conversely,
M(B*AB®)C M(A®) = APAB®AB®=B*AB*

= AYAB"AB"A = B*AB"A

which together with A < B implies

A"A=B"A, using (13).
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similarly,
H((B*AB®Y] c #[(A%)] = (&)°A=(B")"A
= AA®=AB*

[herefore A” < B*, which implies A bt B, as required.

THEOREM 2.5

la) The following conditions are equivalent:
@ ALB
(i) A< B, and AB* and B*A are hermitian;
(iii) A< B, and AB* and B*A are hermitian;
(iv) AX B, and A* B and BA* are hemmitian.
[b) The following conditions are equivalent:
@A b3 B;
(i) AR B, A commutes with B, and B is of index 1;
(iii) A 2 B, and A commutes with B%;
(iv) A T B, A® commutes with B, and B is of index 1.

Proof. Part (a) was proved in {10, Theorem 2). Since A* and B* are
polynomials in A and B respectively [14, Theorem 5.3}, conditions (i), (iii),
id (iv) of (b) are seen to be equivalent. It suffices to establish the

squivalence of (i) and (ii). Clearly A <B = A2 B and A(B— A)=(B -
AJA=0 = AB=BA = AB"=B"A. Conversely A< B, AB*=B"A =

P(A,B—A)=AB~(B—A)=ABYB—A)=A(B— A)B*=0,
fince BB® = B*B, which in turn implies

A(B-A)=A(B—A)B¥B-4)=0.

Simlady P(B - A, A)=0 = (B—A)A=0. Hence A < B. We note that
112) = B®= A% +(B— A)% Hence when B is of index 1, so is A.
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THeoREM 2.8. The following conditions are equivalent:

(i) A 2B,

(i) A2 B, AA* % BB®,
(i) AR B, A*A <B*B,
(iv) AT B, (AA®)" < (BB*)",
(v) AR B, (A*A)" < (B*B)",
(vi) AR B, (AA®)"A < (BB*)A,

(vii) AR B, (A®A)A* < (B*B)"B*,
where n is a positive integer.

Proof. Trivially condition (i) implies all the rest. We first establish the
equivalence of (i) and (i), for which it suffices to show that (ii) = (i). Now
AA® < BB* = (BB* — AA*)AA* =0 = BB®AA* = AA*BB*, whidio
turn implies that for some unitary U we have U *BB*U = D}, U*AA*l=
D2, where D, and D, are diagonal matrices with nonnegative diagord

elements. Also, AA® < BB* = D? < D, which implies that for sutabe
permutation of the columns of U, if necessary,

D} 0 0O D 0 O
Di=|o o0 o Di=[o0o D2 of (2
0 00 0 o o0

where D, is diagonal positive definite of order r, X r,, D, is diagonal positie
definite of order r, X r,, r, = Rank A, and r, + r, = Rank B. Let the colums
of U be partitioned as

U=(Ul % Ua)

corresponding to the partitioning used in (23). Hence

A=UD,L;, B=(U,; ”-)[l;l Do‘][l':’.:]
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rhere
UpU=LiL, =1,

(U, B)*(Uy § Up) = (K, i Ko)*(K, i Kl)=11.n.'

A28 = #(A%)=M(L)C H(B*)=H(K, i K,)

= L =K(I-A})-KyA} for some matrices A, and A,

DA, DiAg\(K:
- B—A=(01§U,)[ 0 zl),’](x:-]

= Rank(B-A)>r,  [unless A, =0] which contradicts (11)
= A=0 = L =K-KA}

= L{L,=K{K,+(L,-K\)*(L,-

= (L,-K,)=0 (since LYL,=K!K,=1,)

= L,—-K,=0 = A=UDK?, B=UDK} +U,D,K3

= A<B.

Thus (i) and (ii) are equivalent.

We next show that (iv) = (i). The hypothesis (AA®)" < (BB*)" implies
that (AA*)" and (BB*)" commute. Hence for some unitary U we have
UYAA*)"U = D2, U*(BB*)"U=D?", where D, and D, are diagonal
matrices with gative diagonal el Further, (AA®)" < (BB*)" =
DX <D = D?<DE = AA*=UD2U® % UDEU* = BB*. Hence (iv)
= () = (i).

Also, (AA®)'A < (BB*)"B = (AA*)™*!'< (BB')"‘“ This shows
()= (v) = (1). Next observe that (iii) = A® 2 B*, A*A <B*B = A*<
B*[using the equivalence of (i) and (ii)), which in turn implies (i). Simitarly
(V) = (iif) = (i) and (vii) = (ifi) = (i), and all the equivalences in Theorem 2.6
ae established.
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REMARK 4. A result similar to Theorem 2.6 is not available for the shap
order. Consider matrices A and B as in Remark 3. Here A%= A and Bt/
Hence A% B? — A?)=(B®— A)A%=0 = A? < B2 We have already mted
in Remark 3 that A< B and A ¢ B. Nevertheless it is easy to check thy
ASB = AZB for any positive integer n.

REMM\K 5. Let Aand B be complex matrices of order mXn. Trivun,
A%B = A*A 2 B*B, AA* 2 BB*. Conversely A*A < B*B, M'<BB'
= AB*(AB*)* = AA®BB*®, A®B(A*B)*® = A*AB*B. Nevertheless A i
does not follow from the given premises, as the following counterexampe
shows. Let r and s be positive integers such that r» 2, 531, r+s¢
min(m, n), and L be a unitary matrix of order r, different from I,. Also ket ?
and Q be unitary matrices of order m and n respectively. Define A and B
follows:

L O
A=Pi0 0
0 0

o o o

0 0
Q. B=Plo 1, 0,0
0 0 0
Observe that AA® < BB*, A*A 2 B*B, but

A¢B,

since L # I. It is shown by Hartwig and Styan [11, Theorem 4.2] that vbe
A and B are idempotent,

A<B = A"AZ<B*B, AA*<BB*.
The following theorem extends this result.

Tusonem 27. A<B is equivalent to (AA*)"A E(BB‘)"B for on
positive integer n.

Proof. The = part is trivial. On the other hand (AA®)"A <(BB‘ ¥
= (AA*)2"*! & (BB*)*"*! which in tumn implies that (AA®)") uf
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(88)**1 commute. Hence for some unitary matrix P,
(AA')’"”=PD,P‘. (BB.)inol.:PDﬂP.‘

where D, and Dy are diagonal matrices with nonnegative entries in the

fgonal positions. Further, (AA®)2"*! & (BB*)2"*! o D, < Dy. Hence,
ndefining P if necessary, one can write

Di**? 0 o0 D™t 0 0
D.=| o o0 o Dy=| o Dz ol
0 00 0 o o

where D, and D, are diagonal matrices with strictly positive diagonal
giries. One can therefore write, with K and L unitary matrices,

A=PD,K, B=PD,L,

where
D0 O D 0 0
D,={0 0 0], D,=10 D, 0
0 0 0 0 0 0

Now

(AA*)"A < (BB*)"B

PDI"*'K & PDF'L

-
= (PD"*'L- PD2"*!K)K*D**'P* =0

= (D} )"P*(PD{"*'L— PDZ**'K)K*D2**'P*P(D; )" =0
= (D,L-D,K)K*D,=0 = (B—A)A*=0.

Similarly (AA®)"A < (BB®*)"B = (A*A)'A* < (B*|"B* = (B*—A*")A
=0. Hence

A<B.
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It was shown by Hartwig and Drazin (8] that complex matrices of arder
m X n constitute a lower semilattice under the «-order. The same cannot be
said about the #-order. Let A and B be square matrices of order n X n, both
of index 1. Let & be defined

g={C:Ceﬁ'""",C:A.C:B}.

If € has a unique maximal element under the #-order, this element is called
the sharp infimum of A and B and denoted by A A B. Given below area
pair of matrices A, B in €*** for which A A B does not exist. Let

111 -2 0000
121 -2 o100
A<l] 12 —2" Bloo 10
111 -1 000 1
Note that A = B + K, where
1
K=}(111-2).
1

If the matrix C is dominated by the matrix B, then C is an idempoteni
matrix H of order 3 X3 bordered by a null row and a null column as in 8.
Since (B—C)C=C(B—-C)=0, it is seen that (A—-C)C=CQ(A-C)=0
= KC=CK =0 =

H(H)c #(L), MH(H’)c 4(R’)

where
1 1
L= 1 -1,
-2 0

that is, H = LZR for some matrix Z. But since H = H? = LZRLZR, we have

1 1
1 =11, R'=

1 0

mnsmm,ﬂ\ank(g g)=1
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Z=Z(RL)Z.

fooblain @ matrix C of maximum possible rank in € one must therefore
dose

Ze {(RL), }.

\geoeral solution to Z is given by

2ab b
“[ a )

were 2 and b are arbitrary complex numbers. This shows that a matrix C in
{of maximum possible rank, namely

_{0o o
C‘(o LG)

sool unique, and A A B does not exist. Note that here
B<A.

face B=A A B=2P(A, B), where A A B is defined as in A A B with
mus order replacing the sharp order in the definition of ¥. The lattice
yperties of the o -order are also studied in Holladay {12), and those of the
wars order in Mitra (15).

For a pair of complex matrices A and B of the same order, it was shown
tyRao et . [20] that

A*€(B ), B'c(A") = A=B. (24)

The same result is studied in an abstract algebraic setting in Hartwig (7). The
‘lowing example shows that a similar result is not true for the group inverse.
S and T’ be nonnull matrices of the same order with at least two
whumos 50 that ST = 0. Consider

lh &) oels 8
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Clearly A® = A = A", B®= B = B" and
BAB=B = A=A"€{B")},

ABA=A = B=B"c (A"},

However, A% B,
The following ch ization is h true.

THEOREM 2.8. If A*€ (B, ) and B*€ (A~ ), then
A=B.

Proof. Note that A®€ { B~} = Rank A®= Rank A > Rank B. Similarly
B*e (A"} = RankB>RankA. Hence A€ (B5,), B€(A°) =
Rank A = Rank B. This implies A® is a reflexive commuting inverse of 8.
Using a result of Englefield [4] and Erdelyi [5] quoted in Section 1 of this
paper, we have A” = B®, which implies A = B as required.

It is a pleasure to thank Dr. George E. Trapp for hls careﬁll readmg of the

manuscript and suggestions which led to a y p
tion.
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