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Abstract — A self-supervised learning algorithm based on the concept of guard zones was developed by Pal
et al" for studying the adaptive ability ofa recognition system, starting with non-appropriate representative
vectors. Guard zones were used (o discard uncchable (doubtful) samples from the parameter-updating
programme, so that the convergence docs not get affected. The algorithm was implemented with success on
speech data but no proof of convergence was provided.

The prescnt paper investigates the convergence of this algorithm, using some results on multidimensional
stochastic approximation. It is shown that the estimates of the parameters converge strongly to their true
values under certain conditions provided the guard zones are cflective in discarding mislabelled training

samples.

Learning Guard-zone

1. INTRODUCTION

The present work is in connection with the earlier
report™ in which a self-supervised recognition system
was developed using the concept of guard zones.

The guard zones are of ellipsoidal shape with
dimensions being proportional to the respective
standard deviation of features. These were described
around the reference vectors of the classes in order to
make a restricted updating programme for estimating
the class parameters.

For the purpose of supervision, it is assumed that for
an input vector falling within the guard zone, the
probability of its being misclassified is so low that it
would not affect the convergence property of the
system in any significant way. The supervisory system,
therefore, needs only to check whether the classified
input is within the guard zone or not for the purpose of
inhibition of the updating programme.

The ecffectiveness of the adaptive system was
demonstrated with success on a set of 871 Vowel
Sounds in CNC (Consonant-Vowel Nucleus-
Consonant) context with first three vowel formants as
features, and non-appropriate initial representative
vectors. The representative vector of a vowel class was
deliberately chosen just outside the boundary of an
ellipsoid having the three axes equal to the respective
standard deviations of the features and mean of the
clusses as the centre. The purpose was to study the
adaptive ability of the system in recognizing vowel
sounds starting with non-appropriate prototypes, The
method used a single pattern training procedure for
learning, and maximum value of fuzzy membership

Convergence

Stochastic approximation

function was the basis of recognition. As the system
used some inherent propertics of the distribution of the
same parameters (mean and variance) as used by the
classifier itself, it may be callted a “self-supervisory™
system. The experimental results corroborated the
theoretical postulates that such system woutd basically
approach the supervised learning algorithm in so far as
the convergence properties are concerned. The system
had been found to approach, for certain dimensions of
guard zone, the performance of a fully-supervised
system which use an extra higher leve) of knowledge.

In this paper we have investigated theoretically the
convergence of this system, and have been able toshow
that under certain conditions the estimates of the
parameters converge strongly to their true values if the
guard-zones succeed in weeding out the “wrong™
training samples. For this purpose, we have made use
of some results on multidimensional stochastic
approximation procedures and probability theory. It
is to be noted that a training sample is being dubbed
“wrong" for updating the parameters of a given class if
it is not really a sample from the class but has been
assigned to it because of “mislabelling”.

2 THE RECOGNITION SYSTEM("

XeR"

X = [x1. x2, ..., x4]",

be an N-dimensional feature vector for a pattern

recognition problem of discriminating between m
pattern classes Cy, Ca, ..., C.. It is assumed that
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the feature vector X exhibits central tendency in
each class C,. about some point Xinitj = 1()m,
the feature vector X admits of second-order
moments in each class, with

(AD)

(A2)

var(x,|1XeC) = o n= ()N, j = 1()m,

(A3) the pattern classes Cy, Ca, ... Cn have ill-defined
boundaries. that is, cach pattern class is a fuzzy
subset of IR, with corresponding grade of
membership u(X) for any X e RY, where

uAX1€[0,1].j = I()m.

2.1. The decision rule
The grade of membership of a pattern with feature
vector X, in C..j = 1(1hm, is defined as

o= (1 [22R])",

’

(1a)

where F. is the exponential fuzzifier, Fy is the
denominational fuzzifier, R, is a reference vecior for the
jth class C,, and

d(X. R} = min IX — R"||, (1b)

1 = 1)k, being a set of h, prototypes from C,
(1)m, with

~ _ anT]2\0%
nx—R,'"u=(Z [%] ) (1c)
] o
where R™is taken to be equal to 8" = [x!..... x{2])": &7

and ¢! correspond 1o the /th prototype and denote
respectively the mean and the standard deviation of
the nth feature in the jth class.

Note that X — Rl is the weighted Euclidean
distance between X and R|" with weights inversely
proportional 10 o).

A decision rule based on the y-values is as follows:
for an unknown pattern with feature vector X, classify
itinto Cy il (X)) > p(X). j, k= (1, j # k

This classified sample is then used as training sample
for estimating the parameters of the kth class provided
the decision is accepted by the supervisor (described
below).

2.2. lterative algorithm for purameter estimation

The components of the reference vector and weight
vector (or each class, used in the decision rule above,
may not be known a priori and thus will need to be
learned. That is. it may be required to learn R, and g,
Jj = I{1)m, wherc

o, = [ofl. ol ... a¥lu"

Let X!}i. X441, ... be a sequence of learning samples for
the class C,. These are assumed to be independently
distributed. Let £4%), and s, be the estimales obtained,
of the mean and the variance cespectively of the nth
fealurc x,. by means of the first ¢ training samples.
(Subsequcntly, we shall not be using in many places

j=1)m
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any suffices to denote classes, wherever there is no
scope for confusion.)

The “Decision Parameter of the Supervisor™ (DPS)
which restricts the updating programme, is defined for
the kth class as

N
(DPS), = ¥ [(x, — 2%V8.]* (2)

where &,, = \/d%//4, i being a positive consiant,
termed the “zonc-controlling: parameter”. as il
controls the dimensions of the hyperellipsoidal regions

G, = {x1(DPS), € 1}. k= I(lyn,

where G, is the guard zone lor the kth class. (4, is some
estimate of ol.) Let ¢!), denote the -th stage estimate

of the second-order raw moment for the kth class.

The learning algorithm is as follows — fork = I(1m
and n = ()N,
el = xhy (da)
cah = QY (3b)
shl =0, {3c)
when 1=1.
For ¢>1,
- =1 _ 1
X = - Thlon+ n Xah (4a)
ch = el + [xnid? (4b)
1 -
s = el - [24)° (e

provided DPS,(1) < 1, i.c. if X&' falls within the guard
zone for the class C,.

If not, no updalting is done for the paramcters of the
class, i.e.

ot Y]

Nty = Ntz -y (5a)
{t]) Ni3)

Cott = Coti- 1y (5h)
[LY —— ) ~

Snir = Smi-n (5¢)

when DPS,(1) > 1.
Of course, DPS,(1) is a suitably modified form of
equation (2}, i.e.

N
DPS,(1) = % [(xih — fo-s/diai -0’
ne|

where dii!_,, = /s4_/A. A being as before.

2.3. A mode! for mislubelled training sumples

The recognition system under consideration is such
that the labels of the training samples are determinesd
by the classifier itself. during the training period.
Hence it is quite reasonable to expect thal a certain
proportion of training samples for cach class have
wrong labels. Morecover, these proporuons are
modified in some way by the supervisor. Let us
therefore assume a simple model, inspired by one
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assumed by Chittineni,” for describing the situation
resulting from the joint behaviour of the classifier and
the supervisor.

Let A,(t) denote the event that the guard zone for C,,
based on (¢ — I}th stage estimates, accepts an
observaton (given the label k) for updating the

tes of the par s of C, i.e.

Alr) = {XIDPS,(s, X) < 1}. (6a)
Chittineni’s model for labelling crrors is specificd as

follows. Let w and W denote respectively the true and
the given labels. Clearly,

w,we{l,2,...m}.

Let n, = P(w = k) denote the a priori probability for
theclass C,, k = 1{1)m. Further, let p(X) = p(X|w = k)
be the class-conditional density of the feature vector x
for the class C,. Also, let a,, denote the probability that
a sample from C, is given the label &, i.c.

ay=PW==Fkiw=j) jk=I1(1)m
Clearly,

(6b)

.>::. ay=1. (6c)
Under this model, it can be shown that
POXE)= p(X(y 1% = k)
,>::. B POX 1w = )/ AL = k)
i X € (AMDI® = k) (6d)

’i, Bik) X 1w = )/ PLALOI® = K)
i X,y € (A5D1® = &) (6e)

where
o _ PAOIX, W=k w=1i)
Ay P® =k Ay ¥ 0
pay = PAOIX ® = low=p o)

P = k, A1)

provided we are prepared to assume

(Ad) pXIWw=kw=j=pX|w=/)Vjik=12...m
(A5) P(W=k A,()+0 Vkand:¢
(A6) P(W =k, A, () #0 Vkandt

For a proof of equation (6d), sce Appendix A.
Also, as noted in Appendix B, finite upper bounds M
and M ®, both 3= O, exist such that

Byl)< M
and

By(t) < M* forall k, j = 1(1)m, and for all ¢.

3. CONVERGENCE OF THE SYSTEM

d

The convergence of the r iti y will dep
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upon the convergence of the learning algorithm. The
convergence of learning algorithms can be defined in
various ways.” For instance, for the problem of
estimating & sequentially by 8,, we say that

(i) the sequence {8,} converges to @ with probability t
or almost surely, if

P[Iim 8, — 8 = 0] =1,
P being the probability measure,
-

ie. if 8 —e.

(ii) {8} converges to @ in the mean-square sense if

lim E[N, — 61"} =0,

E being the expectation operator.

For the learning algorithm given in Section 2.2, the
following theorems can be proved.

Theorem 1. Let X%, and ¢}, be as in equations (3), (4)
and (5), k = 1()m, ¢ > L.

Let
B =[x X oo TRl e B ] ()
and
6, =[x, = 20 o L ol (7b)
where £ = the true mean of the nth feature x, in C,,
o — E(x?) for the kth class
= ot — s
1f
(C1) pM = P[DPS(r) < 118,11 > §,v1¢
(C2) af = E(x}) exists for each class C,Vn = I(I)N
then

(a) {#* — 8.} converges with probability 1 to 0, the
N-dimensional null-vector, as ¢ — oo, for each k
(b) {EN8™ — 8,,,li’} converges, as t — oo for each k,

where
By = IZI Byt +1)6,

Coroliary 1.1. If as t —co, B(t) ~ Byu j = 1(1)m, for
some k, then under (C1) and (C2), (where B,€[0, c0)Vk,j)

a'u -—-: ,in ﬁhl 0,,

Corollary 1.2. If, as t =, B,,(1) — B, where Be[0,
oo) and J is the Kronecker delta, V) for some k, then
under (C1) and (C2),

‘-'3 LN

Theorem 2. Let £}, and s%) be as in equations (3), (4)
and (5). If the conditions (C1) and (C2) hold, then
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() =) - ):B.,(:+ nxf-o0

almosl surely as § — 0.

(i) s} [Z Bt + 1) a3

—(Z Bt + 1);‘,")2]—-0

almost surely as t —co.
The proofs of the Theorems ! and 2 are given in
Appendix B.
Corollary 2.1. f, as t — o0, B,(t) — f,,Vj = 1(1}m, for
some k, B,,€[0, =), then under (C1) and (C2),

5% pyow - (i by .ew)'.
1= e

Corollary 2.2. I, as t — oo, i) — f35,, for all j and
somec k. where B is some positive quantity ¢[0, =0) and
8,, is the Kronecker delta, then under (C1) and (C2),

1
oW

J:2

Incidentally, the meaning of the condition (C1) is
quite clcar. It ensures that the value of 4 is such that at
no stage the guard-zonc is "too small”. This serves to
emphasize the importance of the choice of 4 in
ensuring some sort of convergence. The best choice
would seem to be that for which, in the long run, the
supervisor rejects every wrong decision of the
classifier, while the probability of its endorsing a
correct decision of the classifier asymptotically
becomes as high as possible. Of course, it may be a
debatable point whether a fixed choice of 4 for all
classes and all stages (or even for a given class for all
stages) can help ensure this; as such. this point requires
further study.

We now state a theorem which establishes that, in
general, although individual estimates may not
converge strongly to their corresponding true values,
certain lincar combinations of them converge strongly
1o the various true parameter values.

Theorem 3. For k = 1(1)m. let & and 6, be as in
equations (7a) and (7b) respectively. Then if (C1) and
{C2) hold,

a
— ol

Z Y4l + 1) 0P — 6, with probability 1 as 1 — a0,
=1

for k = 1(1)m,
where v, (1 + 1), k, j = 1(1)m, are the elements of the
gencralized  inverse'® I' (t + 1) of the matrix

ﬂ r+ 1) = {0+ l))) ;ausl‘ymg

P+ DT+ =1,

Proof of Theorem 3 is given in Appendix B.
Corollary 3.1. If (C1) and (C2) hold and for some
By€el0, ).
fuy(1) = flyas t ooV k, ) = 1(1)m,

the identity matrix of order m.(8)
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then
- .
Z Y qp — 6,
=1
where
y,) = [ is the generalized inverse of the matrix

B = ((f,). satislying ST = 1.
Remark. If pit + 1) is full-rank then (¢ + 1) is just the
true inverse (e + 117"

If. however. rank (Bt + 1)) = y(<m). then a
g-inverse [(r + 1) satislying {8) is the Moore- Penrose
inverse'® 8 (¢ + 1) defined as follows:

LA

fu+) = "

mam <
where
4, = ith non-zcro eigen-value ol Mt + 1), i = 1(1)y.
u, = the orthonormal eigen-vector of Mt + 1)

corresponding to 4,
Another theorem can now be stated.

Theorem 4. Let s4), and X4, be as in equations (3). (4)

and (Sh,n = I(I)N. k = I(1yn, 1 = . If(C1)and (C2)
hold, then

Z volt + 1) g — allas 1 — 0
/-
where
gon = chn — Z Bult + 1) [ Z vl + 1) xzh]

and y,(t + 1), /. j = 1U)n. are as in Theorem 3. Proof
of Theorem 4 is given in Appendix B.

Corollary 4.1. 1€ B,,(1) = fi,,as 1 — o V k, jthen under
(Cl) and (C2).

Z Yis Gy — oY as 1 — o0,
el
where
Gl = Clon — 2 ﬂn[ pISS .i.‘:.’.,:l and B, € [0, 1].
=1 I

If B, = B3, Yk j.

1 )
Gun = Snirr

Remark. then

4. DISCUSSION

The implications of the different resulis stated in this
paper (and proved in Appendix B) need to be
discussed.

The inference from Theorems 1| and 2 is that, in
general, if the supervisor fuils 10 weed out (or, at lecast
reduce sufficiently) wrongly labelled training samples,
then we can not be assured of the strong convergence
of the estimates of means and variunces of classes (o
their corresponding true values. In Theorems 3 and 4,
itis inferred that in such cascs, if we can impose certain
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conditions (defined by ptions Al-A6) then
certain lincar combinations of these estimates do
converge strongly to the true values of the various
parameters.

If. however, the supervisor is ‘“asymptotically
perfect™ or “perfect™ in the sense that it can detect all
wrongly labelled samples eventually or at each stage,
then it can be inferred from Theorems !t and 2 that the
estimates converge strongly to the respective true
valucs of paramecters. This follows basically from the
definition of the B4, (t)'s (equation 6f) and the fact that
P(A (D Ix. W = k,w = j) can only take either of the two
values 0 and |, with the possibility of its taking the
value 1 being considerably higher for correctly labelled

samples.
5 SUMMARY

In this paper we have investigated certain aspects of
the large-sample behaviour of a self-supervised pattern
recognition system which was reported earlier.!"! The
problem considered is that of stochastic convergence
of the system in the presence of mislabelled training
samples. For this purpose, we have adopted a simple
model' for labelling errors.

The recognition system'" itself can be characterized
as lollows. For an m-class pattern recognition problem
based on an N-dimensional feature vector X, it is
basically a two-stage process for each input sample. In
the first stage, the input sample is classified into one of
the m classes on the basis of its maximum g,(X)-value,
defined by equation (la). In the next stage, the
updating of parameters takes place. In this stage a
supervisor is appointed by means of the so-called
guard zones. These are hyperellipsoidal regions
defined with the preceding estimates of the mean as
centre and have axes proportional to the preceding
values of the standard deviations in the respective
directions. The constant of proportionality, called the
zone-controlling parameter, controis the dimension of
the guard zone. Analytically, the guard zone for a class
C, is defined as the region

{xIDPS, (1) < 1}

where DPS, (¢) is defined by equation (2). The current
training sample for a given class is used to update the
estimates of the parameters only if it falls within the
guard zone for the class. Otherwise, the estimates are
kept unchanged and the system calls for the next input
sample.

This sort of learning algorithm is basically of the
stochaslic approximation type. Hence we have made
use of results on muliidimensional stochastic
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approximation to study its convergence under the
mode! for labelling errors that we have adopted. The
inferences made are based on certain assumptions (Cl
and C2) and can be summarized thus.

In the presence of labelling errors, the sequence of
estimates {#"} docs not converge strongly to the true
value of the respective parameters. Rather, itconverges
strongly with another sequence

{g B (0 8,}

where B,,(¢) is as in equation (6f), and &* and 6, arc as
in equation (7). Also, the sequence

{05" - ,i. ﬂ.,(r)o,}

converges in the mean square as t — oo (Theorem 1).
Another inference (Theorem 2) which follows from the
above, is that certain linear combinations of the
estimates, viz.

,i. yult + 1) 0,

converge strongly 10 8, k = 1{1)m, as t ~c0, where y,,
k,j = 1(1)m are as defined in Theorem 3. However, if
the parameters to be estimated are the class means and
variances, the corresponding results are slightly
complicated. While the estimates of the means behave
as described above, the behaviour of the estimates s::,’,
of the class variances follows a different pattern which
is described in Theorems 2 and 4.

Finally, it was seen from Theorems | and 2 thatif the
supervisor can detect all wrongly labelled samples
cither eventually or at each stage. then the estimates do
converge strongly lo the respective true values of
parameters.
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APPENDIX A

Proof of vquation {6d)
We know that for any event 4 in the sample spacc of the
random vanable x
pixIv =k, A)

plxIw = k) = {p(xiﬁ- P

Now, for any event 4 for which P(w = k. A) # Oand P(w = k,
A7) # 0, we have

plx 1t =k, A)
_pix v =k A)

ifxe A

otherwise (A-D

Piw = k. A)

(Zﬂxw=hw=ﬁm)

[ VY
P(% = k. A)

=Y a, pix1w = k. w = j)/PLA1)I W = k), say, (A.2)

-1

where
PlAix, w =k w=j]

VI T ek @, 7, (A3)
using varous well-known results from the theory of
conditional probability.

Similarly we have
plxIw = k, A%)
Y PlAlx,# =k.ow =j)plxiw =k ow=fla,n
=1 A
Piw = k. A7)
= a, pxiw = k. w = )/P(AUOI® = k), say. (A4)
=
where
. _PAIX W =k owe=))
ay o= k) am, (A.5)
T oa,plxiw=)) ifxed
pIXIW = k) = " (A.6)

2 ai p(xiw =) otherwise
=1

Note. Under assumplions (A5) and (A6), the a,'s and the

a;,'s can easily be seen to be lying in the interval [0, 1] as
shown below.
As

P =k) =Y Plw=kw=))

e
=Y P=kiw=j)Pw=j)=) a,n
1= =t

we must have

However, as P(AIx. W = k. w = j)€[0, 1]
it follows that

a,€[0.11.V k. j.
Similarly, it can be seen that

a,e[0, 1]V &, j.

APPENDIX B

For proving Theorems 1. 2, we shall requirc the following
lemmas.

Lemma 1" Let |a,} be a scquence of positive real numbers
such that

’;l al < oo. (B1)
Let x, and y, be k-dimensional random vectors which satisly
XKoot =%, = Q¥ n 21 {B2)
Let M, be a measurable mapping from IR* 10 IR* such that
Ely.Ixi. %2, ..., x,) = M {x,) a.c. (B3)
Let a, b, ¢ be non-negative real numbers and Jed
EYal7 11, X2, .0 X,) € @ + blix, )l + clix i se.  (B3)
Also, for every xe R*and n 2 1,
x" M,(x) = 0. (B5}
Il x, is s0 chosen that
E(lIx,li?) exists {B6)

then the sequence {x,] converges with probability | and the
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sequence (E]Ix 1?} converges also.
Lemma 2.\ that pti (B1)—(B6) hold. If
there exists, l‘or evcry n>0aé>0suchthatfora 1

n S l%l € gt X M (87
then {x, e‘convergs to the k-dimensional null vector 0 almost
surcly, that is, with probability one.

ll?elmm: 3. Let g:R" — R be a continuous map, p, ¢ 5 1.

P[ lim ||x, — aj| = 0] =1, x.seR’

then .

P[ lim || g(x,) — g(a)ll = 0] = 1.
ie o
- as
X, — a = g(x,) — g(a)

. .Proo[oj Theorem 1. The theorem can be shown to be true
ifitcan be established that under the conditions (C1)and (C2),

(i) ¢ — O with probability 1 as { — o, Vk
and
(i) {E [I@*11*]} converges as t — o0, VK,
where

'llll = 0’1) — J.Ir

These. in turn, follow immediately from Lemmas 1 and 2 if
it carbbc shown that the conditions (B1)~(B7) hold with

We first note that

xh I'orlml (®.1)
on = { o, v:'_'.. > 1 (B.2)
where
o, - ,') if DPS,()) & 1
And f:RY — R is a continuous map defined as
fix) = [xs, Xz, .. Xpyo X3, X}, ..o 2T,
where
x =[xy, X2, ..., xp} € R¥.
Obviously, therefore,
ey for ¢ =1 (B.4)
= { o, =z, for £> 1 (B.5)
where
3 ¥ —g(X{)) if DPS() g1
2= {0 otherwise * (B6)
and
XN = XN — By
(B.7)

B = Z Byle + 1) 8,

We now proceed to v:nl’y the conditions {B1)-(B7) for ¢\
Asa, = ;Vn here,and 3 ! — <0, (B1) is satisfied. (B2) holds,
~n

because of equation (B.5).
By equations (B.6) and (B.7), we have
E[Z® 10, g, ..., i

- E(pl" — :(X.‘,". Wief e, o™ A + 1)),
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as Z!M = O in A5(r + 1)
o — ELaX ) | A + 1))
as Xi, , is mdependem of Xith Xith ... X
and hence 1,
-t
since
E[g(X[ ) | Au(t = 1)]
= E(RX ) 1 At + 1] ~ 8,61)

oo P

=¥ 80+ DEXIw=1 -6
=1
on account of Equation (6d)

-3 Byt + 18, — 8,(0)
i=1

= 0.
This verifies (B3) with M!"(x) = x, Vx € IR¥,
Also,
E[“zﬂ)"l "Ill li - '(i)]
= EQlel" — gXi ) 171 A + 1]
for the same reason as before.
= Lo’ — 20" {E(X{P\ )} + ENgfX{L )17
<ot + R,
R being a finite positive constant independent of ¢¥', ..., ¥t
since Eg(X{!, ) = 0 (as scen above) in the sub-space
Ayt + 1) = {xIDPS,(t + 1) 5 1},

and

ElgX{ Wi
= EIMXN ) — Bl
< ENRX DI = 18,117 a8 ERXE () = &y
< ENEX I

= 5 Bult + 1) (a2 + o). by (C2)
=
< i (o + o) = R, say.
=
Thus (B4) holds witha = R, b = 0,¢c = 1.
Finally, as
@) xMP(x)=x'x20
Gi) ECleI] < R <o, as
and

seen before

int
Gil) € lxl € g~ XM (x) > 5,n* > 0 because ol (C1),
the conditions (B5), (B6) and (B7) are respectively seen 10 be
true. Hence the theorem.

Proof of Theorem 2. This theorem follows directly from
Lemma 3 and Theorem 1.
As (C1) and (C2) hoid, we must have, by Theorem 1,

2= 3 Bufe+ A8 S0,
=i

o — Zp.,(:+l)a:<.0:o as t 0.
-
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Also,
pr- [f: Bt + Do — (,i Bute + 1) z'.")']
-[dt.—§ﬂ¢:+ na:"]
- [(f.‘:a' - (i: Bufe + 1) i'.")’].

By virtue of Lemma 4 given below, it follows that

(B.8)

T ppernapo
=1

implies
sz —(}': Bt + nz‘.ﬂ)’ 2o
=1

since Y. B,(t + 1) # is bounded above by Y. ¥, a finite
=1 =1
quantity.
The right hand side of equation (B.8) converges surely to
zero. Hence the thecorem.
Lemma 4. Let {X,) and {Y,] be two sequences of random
variables defined on the probability space (fX, F. P). Il

as

X, —Y. =0

and | ¥, | < K, a finite quantity, then
[

X:— vl o

Proof of Theorem 3. This follows directly from Theorem 1
and Lemmas 3 and §.

Lemma 5. Let X, n = 1,2... be a sequence of matrices of
order p x g whose elements x}’ are random variables over a
probability space (€, F, P). Let A be another matrix of order
P x q such that every element x{’ of X, converges with
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probability | to the corresponding clement a, of A, j.c.
x = ap = 1(1)p.] = 1(1)q. as n —co.

1et P and Q be matrices of order m x p and ¢ x !
respectively, and define

2z, .,-PX.Q. B, =PAQ

Then

205 b, (= 1(mj = WD as n oo,
Proof of Theorem 4. As seen in Theorem ),

i — i Bt + hHo¥ 20 ast—co.
Also, from Theo:;‘n 3, we have
T+ 032, S v,
from which it (o;l-c:ws by Lemma 3, that
[ PN f!'..]’ 2y
and hence '
PO RN [)': Yo+ 1 a]’ - § vt Zo
'l-'his. coupled with the first statement, implics that
at - 5o+ nox+ T o vtz Do
™1 -
ie.
- i Bur + 1) o — 1) S0

As o = o ¥ — ()2, the theorem follows.
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