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ABSTRACT

Billera has proposcd an algorithm to find the smallest committee contain-
ing a givenset T. In this papera modification, which not only makes
the algorithm simpler but also computationally much more cfficient, is
proposed.

1. Introduction

Conceptually clutters, simple games and coherent systems are equivalent
(sce [2). {4] and [7]). Let R be a clutter on N and 5[ R] its blocking clutter.
The elements of N are called players and components, respectively, in the
terminologies of simple games and coh y The el of
R(B[R)) are referred 10 as minimal winning (blocki litions in theory
of simple games whereas they are called mlmmal path (cut) sets in the
context of coherent systems.

Birnbaum and Esary introduced the concept of modular sets in the
context of coherent systems [3]. The same concept has been called com-
mittees in the context of simple games by Shapley [10). Recently there
has been some renewed imterest in the concept of modular sets or com-
mittees ([8] and [9]). Le! Tbea onempty subset of N. The problem of
finding the I ing T was idered by Billera and
he also proposed an algorithm for this purpose [2). For quite sometime
this was the only algorithm available for a general clutter. Recently
Mohring and Radermacher have proposed another algorithm [6]. In this
paper a modification for Billera's algorithm, which not only makes it
simpler but also computationally more efficient, is proposed. In the
spirit of Billera [2), the context of clutters is used for this purpose.
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2. Clutters and Committees

Most of the introductory material in this section is from 2] and
reproduced here for the sake of completeness. By a family E on a finite
sct N, we meana family of subsets of N. The support of E which we
denate by s(E) is by definition

$(E) =\ p.gE.
If A C N, then E(A) (or some times written as (£) (A)) is a family on N
defined by
E(A)={E:E€EandE N 4 % ¢}
IfA ¢ B g N, then £(A) = (E(B)) (A) and s(E(A)) G s(E(B)) & s(E),

A family R on a finite set N is called a clutter if R 3 ¢, R # (¢} and
no clement of R is properly ined in another el of R. The
blocking clutter of R (or simply the blocker of R) is a clutter, {{R]) oo N
defined by

b[R)={S:S < N,S NP3 ¢for all P € R and no proper subset of
S has this property).

It is well known (see for example [1, Exercises 3 and 4 on p. 19.]) that
s(b[R)) = s(R) and b[B(R]) = R. When s(R) C N, the clements of
N-s(R) are called dunmies. We require the trivial results of Lemma 1 in
the sequel.

Lemma 1. Let R be a cluticr on some finite set N and ¢ 3= J © s(R). Then
R(J)isalso a clutter on N with J g s(R())) & s(R). In pariicular if J =
s(R) then R(Jy = R.

Throughout the remaining part of this paper, R denotes a clutter on
some finite set N. A ponempty subset J of s(R) is called a committee of
R if and ooly if

R()) = {8:5 = (P N ) U (@—)); P.Q€ RU)).

For a number of other equivalent characterizations of i we refer
to [4]. {8) and [9]. We note that s(R) itself and all singleton subsets of
S(R) are committees of R. Itiseasy to verify that if s(R(J)) = J, thenJ
is a committee of R. It is well known (see [4, p. 596)) that the nonempty
intersection of two committees of R is again a committee of R.

Let T be any nonempty subset of s(R). We shall denote by Cr the
1, i ining T (tbat is, the i ion of all
containing T). An algorithm that is available to find Cr is due to Billera
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[2). We now give a brief description of Billera’s algorithm, For each
i €S(R) let R! = {S:S = P—{/}; P € R({i})}). We note that R is cither a
clutter or is equal to {#}. To simplify the description of the algorithm, we
define b[(g}] = ¢.

Billera Algorithm

Input: A clutter R on some finite st N and a nonempty subset T of
S(R).

Output : Cr the small i ining T.

Step0: Putre= 1and B = T and go to Step 1.
Step 1 : Put T, = B and find b[R"] foreach i € T,, Let D = H_ bR

and E= N HR]. GotoStep2.
1eT,

Step 2: If (s(D—E)) N (s(R}—Ts) = ¢, then Cr = T,, otherwiss put
r=r+land B = (s(D-—E)) U Trand go to Step 1.

For a proof that Billera algorithm terminates in fnitely many steps
with Cr, we refer to [2]. We shall now propose a modification to this
algoritbm which not only makes it simpler but also computatiopally much
more efficient. For this purpose, we require the resuits of Theorems
1 and 2.

TREOREM 1. A nonempty subset J or S(R) is a commirtee of R if and only
if SBLRAD () = J.

Proof. We note from Lemma 1 thatJ < s(R(J)) = s(5{R(J))D. Let J
be a committee of R. If s(R(J)) = J, it follows Lemma 1 that (3{R(})] (J)
= H{R())], that is s((b[R())))(J)) = J. Now consider the case when J C
3(R(J)). Let D and E be the families defined by

D={8:S=PNJ;PecRI}
E={8$:8=P-J;PeR().

The hypotheais that J is a committee implies
R(NH={8:S=PUQPE€DQ¢E)

Therefore we note that D is a clutter and s(D) = J. Further the additional
hypothesis that J C s(R(J)) implies that E is also a clutter with
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S(E) = s(R())—J. Itis casy to verify that b[R(J)) = b[D) U HE]. We
therefore have (B[R(D]) (3) = b[D). The required assertion is then
immediate.

Suppose now (B[R (N) = J. If s(b[R(J)}) = J, then s(R(J) =}
and J is trivially a committee. Consider now the case when J C s(b{R(]))).
The hypothesis that s((b[R()D (J)) =J implics P & Jor P & s(R()—J
for all P € J[R())]. Further the assumption thatJ C s(5(R(J))) implies
the existeace of at least one P € b[R(J)] such that P g s(R(J))—J. Consider
the familics Fand G defined by

F={S:Se¢d[RU):SeI}
G = {S:S € RO S & s(RY-I}.

We note that F and G are clutters and B[R(J)] = F U G. It follows that
$(F) = J and 5(G) = s(R(J))—J. It is easy to verify that

R(J) = b(B[RIN]) = {S:S =P U Q: P €b[F], Q€ bG]}
={8:S=(PN N U (Q-N.P. Q€ R}
Therefore I is a committee of R.

THEOREM 2. Let Jand K be nonempty subsets of $(R) such thatJ D K.
If 1 is a committee of R, then s((){RK))) (K)) € J. -

Proof. Let J be a committee of R and furtber let D and E be the
clutters defined in the proof of Theorem 1. Recall that (D) = I, s{E)
= s(R(J)—J and

R)={8:5=PUQ;PeD,QéeE}
It follows that
RK) = (RD) (K)={S-SN K34 5€RD)
={8:S=PUQPNK#¥$PEDQEL}
={8:S=PUQ,PeD(K)QeE)

From Lemma 1, we note that R(K) and D(K) are also clutters. It is easy
to see that b[R(K)] = B[D(K)] U bE). Therefore it follows that
(IR(K)) (K) = b[D(K)]. Since s(b[D(K)]) = s(D(K)) & 5(D) = J, the
required result follows.

We are now in a position to state the modified version of Billera's
algorithm.
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Modified Billera Algorithm

Input: A clutter Ron some finite sst N and a nonempty subset T of
S(R).

Output: Cr the smallest committee containing T.

Step0: Putr = 1and B éTtndgo to Step 1.

Step 1: Put T, = B and find b[R(T.)] and go to step 2.

Step 2: If s((B[R(T)])(T7)) = T, then Cr = T,. Otherwise put
r = r+1 and B = s((b{ R(T-)})) (T+)) and go to Step 1-

The convergence properties of the above algorithm are established in
Theorem 3.

TueoreM 3. Let T be any nonempty subset s(R). The modified Billera
algorithm terminates in finitely many step with Cr.

Proof. Suppose the algorithm terminates at r = k. We note that
T=T,C Ty..C Ta Itfollows that k € | s(R)—T |. By Theorem 1
we fude that Tx is a itteo of R. Let J be any committec contain-
ing T. By assumption we note that J D T,. Using Theorem 2 we have
J D Ty Repeated application of Theorem 2 implies J D Ta. Since T is
a committe, it follows that Cr = Ti.

The main putional effort required in the impl ion of Billera's
algorithm as well as its modified version consists in finding the blocker of
aclutter. This problem is equivalent to that of finding the prime covers in
a sef covering problem and this is known to be NP hard. Ia the Biliera
Algorithm, at Step 1 we have to find b[R'] for cach i€ T,. where as in the
Modified Billera Algorithm we need find only #{R(T,)). Consequently the
modified algorithm is computationally superior.

It should be noted that polynomial algorithms are available for special
types of clutters like the circuits of a matroid [5]. It has also been shown
in {6] that the general algorithm of Mohring and Radermacher is poly-
nomial only for certain types of clutters. However these results seem not
extendable to the general case.
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