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ON BOUNDED LENGTH SEQUENTIAL CONFIDENCE INTERVALS
BASED ON ONE-SAMPLE RANK ORDER STATISTICS'

By PRANAB KUMAR SEN AND MALAY GHOsH?

University of North Carolina

The probl of obtaining seq ial fid intervals for the
median of an unknown symmetric distribution based on a general class of
one-sample rank-order statistics is considered. It is shown that the usual
one-sample rank-order statistic possesses the martingale or sub-martingale
property according as the parent distribution is symmetric about the
origin or not. Certain asymptolic almost sure convergence results (with
specified order of convergence) for a class of rank-order processes and the
empirical distribution are derived, and these are then utilized for the study
of the properties of the proposed procedures.

1. Introduction. The problem of finding a bounded length confidence band for
the mean of an unknown distribution is studied by Anscombe [1] and by Chow
and Robbins [6]. Farrell [8] considers the problem for the p-quantile of a distribu-
tion. Sproule [19] has extended the results of Chow and Robbins to the class of
Hoeffding's [11] U-statistics, and in the particular cases of the signed-rank and
sign statistics (which are both U-statistics), Geertsema [9] considers the problem
based on rank estimates of the median.

In the present paper, we consider the problem of providing a sequential con-
fidence interval for the median of a symmetric (but otherwise unknown) distribu-
tion based on a general class of one-sample rank order statistics. Of particular
interest is the procedure based on the so called one-sample normal scores statistics.
This procedure is shown to be asymptotically (i.e., as the prescribed bound on the
width of the confidence interval is made to converge to zero) at least as efficient as
the Chow-Robbins procedure for a broad class of parent distributions.

In the course of this study, several asymptotic results, having importance of their
own, are derived. First, the elegant result of Bahadur (2] on the behavior of the
empirical distribution in the neighborhood of a quantile is extended to the entire
real line (see Theorem 4.2). Second, the weak convergence results of Sen ([18])
Theorem 1) and Juretkova [13] are replaced by almost sure (a.s.) convergence
results, under slightly more restrictive conditions on the scores and the underlying
distribution (see Theorem 4.3). It is also shown (see Theorem 4.5) that the usual
one-sample rank order statistic possesses the martingale or the sub-martingale
property according as the parent distribution is symmetric about the origin or not.

Section 2 of the paper deals with the preliminary notions and basic assumptions.
The next section describes the proposed procedure and states the main theorem of
the paper. Section 4 is concerned with the results stated in the preceding paragraph.
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The proof of the main theorem is supplied in Section 5, and the asymptotic
efficiency results are studied in Section 6.

2. Preliminary notions. Let {X,, X,, ---} be a sequence of independent and
identically distributed random variables (i.i.d. rv) having an absolutely con-
tinuous distribution function (df) F,(x) with location parameter 0 (unknown). It
is desired to determine (sequentially) a confidence interval fy = {0:8, y < 0 < 0y 5}
of width < 2d, where for each positive integer n, 8, , and 0, are two statistics
(not depending on d) based on the first n observations, such that lim,. , P{fe/,} =
1 —a (the desired confidence coefficient), while N is the stopping variable defined
to be the first integer n 2 n, (some positive integer) such that l')U'N—@L',,, =2

Our procedure for determining N and (8, y, 8, rests on the following class of
one-sample rank order statistics. Let ¢(4) = 0 or 1 according as u < O or not. Let
then

@1) Ry =X5-1¢(X )= )XsD a=1,---,n; X, =(X,,-", X,)
Define
(22) To=T(X,) = n" 'Y ia (X ((n+ 1)7'R,,),

where {J(u):0 <u <1} is generated by a score-function {J(u):0=u <1} in
either of the following two ways:

(@) J(u) = J(f(n+ 1)), (i=D)n<ugilmfori=1++,n;

b) J () =EJU,), (i—1)jn<u<iln, | £i%n, where U,, <--- < U,, are the
n ordered random variables from the rectangular (0, 1) df. Also, we assume that
J(u) = W' ((1+u)/2),0 £ u < 1, where W(x) is an absolutely continuous df defined
on (— 0, o) satisfying the conditions
(2.3) (@) W(—x)+¥(x)=1,ie., ¥(x) = ¢(x) = y(—x), forallreal x,
(24 (b) ¥(x)/[1—W¥(x)] isnon-decreasing forall x = x,,
where x,(2 0) is some real number. Thus, the tail of the df W(x) has an increasing
failure rate. Note that by definition, J(0) =0 and J(1) is T in u:0 < u < 1. Also,
YOIl ()] = [27'Q¥(x) - D{1 =¥} = '@ -]}, u=2%¢(x)-1.
Hence, by (2.4),

(2.5) J'(u) S K(1—u)"?, O<ux<l, where 0 < K < o,
and by integration,

(2.6) J(u) < K[—log(1—u)], O<u<l.

Finally, by (2.6), there exists a f, (where 0 < 1, < 1/K), such that

@7 M) = [jexp[tJ(u)]du S J§(1—u) " ™du < o, forall 151,.

Note that (2.4) (and hence, (2.5)+2.7)) hold for the normal, the logistic, double
exponential and many other df’s. The statistic T, when ¥ is the standard normal df
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is termed the normal scores statistic, and when W is uniform over (—1,1), it is
termed the signed-rank statistic.

We denote by &, the class of all absolutely continuous df’s F symmetric about
0 for which both the density function f and its first derivative f* exist and are
bounded for almost all x (a.a. x). Also, let
(2.8) Fo(J)={F:FeF,, and lim, ., f(x)J'(F(x)— F(—x)) is finite}.

Throughout the paper it will be assumed that Fy(x) = F(x—#8), where Fe F (/).
In connection with the finiteness condition in (2.8), we refer to [15] for details.
Introduce the following notations:

(2.9) Jo=nT' Y0 13+ 1), A2 =0Tt LA+ )
(2.10) u=JsJw)du and A*=[{J*(u)du.

Note that if § =0, T, has a distribution independent of F, and symmetric about
3J.. Hence, there exist two known constants T{Y and T{? = J,— 71 and a known
@, (close to the specified ), such that

@I Pof WP S L =TX)S T} =l-a,»1-a as n—-w.

For large n, it is known (cf. H4jek and Sid4k [19), page 166) that

(2.12)  lim o n¥ (TP —1T) = =347y, lim, o n}(T0—1]) = 4412,
where

(2.13) D(r,,) =1~af2 and ®(x)=(2m) ¥ [Z  exp(—4P)dr

It is also known (cf. [5] Theorem 2 under the existence and a growth condition on
J”(u), and [16] Corollary 5.1 without any assumption on J'(«)) that under the
assumptions made earlier

(2.19) n= Y i (n + D)= J(f(n + l))| =o(n"%),
which implies that the use of either of the scores will lead to the same asymptotic
results,

3. The procedure for obtaining /y. Since J(u) is 1 in u:0 <u <1, T(X,—al,),
(where 1, =(1,---, 1)) is | in @: —0 < @ < 0o. Define as in [18]

3.1 8,,=sup{a: T(X,—al,) > T},
3.2) Oy, =inf{a: T,(X,—al,) < T?}.

It follows from (2.11), (3.1) and (3.2) that P,{d, , 50 <8,,} =1—a,—» 1—qa, as
n— co. Our proposed procedure is then framed as in the beginning of Section 2.
This is quite similar to the Chow—Robbins procedure, but instead of their con-
fidence interval we use (3.1) and (3.2) which are known to be more robust for
outliers or gross errors. The following theorem relates to the asymptotic properties
of the proposed procedure.
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THEOREM 3.1 Under the assumptions of Section 2,
(3.3) N(= N(d)) is a non-increasing function of d, N(d) is finite a.s. and
EN(d) < o for all d > 0; limy_o N(d) = 0 as., and
limy,o EN(d) = o0;

3.4) limg.o N(@)vd) =1 as.,
3.5 limy_o Pe{O€ g} = 1—a;
(3.6) limy_ o E[N(d)]/v(d) = 1,

where W(d) = A*1%,/(4d*B*(F)) and
3.7 B(F) = [§ (d/dx)J[2F(x)— 1] dF(x) = [§ J'(H(x))f(x)dH(x);
H(x) = F(x)— F(—x).
The proof of the theorem is postponed to Section 5. In proving this theorem,

several other results are needed which are proved in Section 4.

4. Some convergence results on the empirical process and on {7,(X,—al,):
— o <a < o0}. We are primarily interested in the asymptotic (a.s.) linearity of
n}[T(X,)— T,(X,—al,)] in a, when a is *“*close” to zero. If we define the empirical
df’s

4.1 F(x)=n"'Yl c(x—X), —o0<x<om,
H,(x) = F(x)—F(—x=), x20;
(4.2) Foix)=F(x+a) and H,(x)=F,(x)=F,{—x—),

we have from (2.2), (2.14), (4.1) and (4.2) that
[ T(X,)~ T,(X,—al,)]
43)  =n}[3 J,(nH(x)/(n+ 1)) dF ()~ T J(nH, (x)/(n+ 1)) dF, (x)}
= n} [§ [J(nH, () (n+ 1)) = J(nH, ()/(n+ 1))] dF, ()
+nt [§ J(nH (x)/(n + 1)) d[F(x) = F, o(x)]+o(1}
= I,,(a)+1,,(a)+o(1).

Thus, the left-hand side (1.h.s.) of (4.3) behaves as a functional of the empirical
processes {n[F,(x)— F(x)]}, {m[F,(x+a)—F(x)]} and {n[J(nH (x}/(n+1))—
J(nH, (x)/[(n+1))]}. We shall study some of the properties of these processes first.

Wesstart with the empirical df F,. Since Fis absolutely continuous, Y; = F(X)),i =
1,2, ---, are i.i.d. rv with the rectangular (0, 1) df. Let G() =n"" 7., c(t—Y),
0511, n21 Define the empirical process

(4.4) Vi) =n[G(—1], O=tx1
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Later on, we shall find it convenient to extend the domain of ¥, to (— 0, ) by
letting V,(t) = 0 for all ¢ outside the unit interval (0, 1). It is well known (cf.
Billingsley [3] pages 103-108) and H4jek and Siddk ([10] page 276) that ¥,
weakly converges (in the Prohorov sense) to a Brownian Bridge. Using a result of
Strassen [20], Brillinger [4] has strengthened this to a.s. convergence for a suitable
construction. However, as we shall see later on, for proving (3.6), we need not only
the a.s. convergence but also a smooth rate of convergence of the tail probability
s0 as to make its contribution in (3.6) asymptotically negligible. For this reason,
we state the following lemma whose proof is contained in [7] page 646.

LEMMA 4.1. For every finite s > O, there exist positive constants (c,\*?, ¢,*’) and a
sample size n, such that for all n 2 n,,

4.5) P{supo <1 [VilD)| Z ¢,V (logn)t} < ¢,Pn>,

Let now g,(n) = n~*(log n)*, k 2 1. Define
(4.6 K0 = sup, {|V,(t+a)—¥,(1)] : |a] < a(m)}, nzl,
e%)) K,* = supg< <1 Ki(1).

It is known (cf. [3] Section 13 and [10] page 276) that K,* weakly converges to 0.
We are interested in the a.s. convergence of K,* along with certain asymptotic
order for the tail probabilities, so that we can make analogous probability state-
ments for (4.3). This is accomplished here by extending a result of Bahadur
([2] page 578) to the entire real line.

THEOREM 4.2. For every finite s > 0, there exist a ¢, > 0 and a sample size n,,
such that foralln 2z n, k 2 1,
(4.8) P{K,* = c,n ¥(logn)*} g 4n™".
Hence, K,* = O(n~*(log n)*), with probability one, as n — .

Proor. Let &,,=j/[n*],j=0,1, ---, [n?), where [s] stands for the largest
integer < s. Since for the Y, the density function is equal to 1 (0 <t < 1), by the

same technique as in Bahadur ([2], namely, his (8), (9), (11), (12) and (13)), it
follows that for large n,

4.9) P{K,(&;.) > en¥(logn)*} < 4fexp(—v,)], ¢>0, for j=1,"--,[n*],
where
(4.10) v, = —}log n+[c*n*(log n)**]/[2{n*(log n)* + cn*(log n)*}]

= —}logn+ici(logn)* [1+cn~¥]7 1,

Since k£ 2 1, by proper choice of ¢ = ¢,/3, say, v, can be made greater than (s +4)-
log n for any given s(> 0), when n is taken large. As the right-hand side (r.h.s.) of
(4.10) does not depend on j, by the Bonferroni inequality, we obtain for large n

(4.11)  P{K,(£;,) > (c/3)n"*(logn), for at least one j = 1, -,[n}]}
< 4ntlexp(—v)] £ 4n~".



194 PRANAB KUMAR SEN AND MALAY GHOSH

Now, note that if 1 and r+a both belong to the same interval [ ., &;4y.0], as
Eroim—Egn=n"t < guln), |V (1+a)— V(1) < 2K,(&;,). On the other hand, if ¢
and {+a belongtotwo differentintervals,say, re [¢, .. &4, ] andr+a€ (&, . &0y ),
la| < gi(n) = & n—&;4 1.0 S ga(n) whenever r 2 j+1 (otherwise, interchange j and
r). Hence,

(4.12) |V (t+a)= V(0] S [Vt +a)= V(& )| + [ Val&em) = VilE v 1.0
+|Va) = VoG 1100
S K& )+ 2K, (&0 1) S 3[max, g 50u Kal€0],
forall0 <5< r < [n*)—1. Thus,
@.13) K,* = 3[max, g sy Knl€)0 D
and, as a result, (4.8) follows from (4.11) and (4.13).

REMARK. Whenever F is such that sup,f(x)=/f, <0, |a| £ g(n)=>
|F(x +a)— F(x)| S foga(n), so that by (4.8), for n 2 n, (where g,*(n) = fo ™' g.(n))

(4.14)  P{Sup, SUPja| 5 guetm ¥ |Fu(x + @) — F(x) — F(x + @) + F(x)| > ¢,n " ¥(log n)*}
= P{supo<s<1SUPjoj 5 quim | Va1 + @) = Vo(1)] > c.n " H(logn)} < an™,

It may also be remarked that in Theorem 4.2, one can also work with any g,(n)
where ntg,(n) increases (as n — co0) at a rate not slower than that of log # but not
faster than that of n* for 4 < .

Define H(x) = F{x)—F(—x),x 20, and

(4.15) F,(x)= F(x+a), H,(x) = F(x)—F(—x) = P[|X—a| £ x].
Note that H, depends on n whenever a depends on n. Since Fe &, for large n,
(4.16) SUP o) 5 ga(m SUPs | Ha(x) — H(x)| = O(n " '(log n)**).

Hence, upon noting that |H, (x)—H(x)—H,(x)+ H(x)| £ |F, {x)— F.(x)—
F(x+a)+ F(x)|+|Fo(—x—)—F(—x—)=F(—x+a)+ F(—x)|, we obtain (rom
(4.16) and Theorem 4.2 that as n — c0,

(4.17) P{SUP|o) 5 gu(m SUPx 1* |H, o(x) — H (x)|
2 2c,n" *(log n)*[1 4+ O(n~(logn)*]} S 4n™".

We shall make use of the above probability inequalities for the study of the
asymptotic (a.s.) convergence of our rank order process

(4.18) Wi(a) = B [T{(X,)~ T(X,—al)—aB(F)]. —®<a<o,

where we assume that = 0, as otherwise one should replace X, by X,—-01,.
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(4.18) is, in turn, useful for proving the a.s. convergence of nt(d,,—8,,] to
Av ;| B(F); the corresponding weak convergence result was proved in [{8]. Also,
for n~ta belonging to a bounded interval, the weak convergence of W,(a) to 0
follows along the lines of Juretkova [13].

THeOREM 4.3. Under (2.3), (2.4) and (2.8), for every s(> 0), there exist positive
constants (k" k,\*) and a sample size n,, such that for alln 2 n, k 2 1,

(4.19) P{SUP o) s guim [ Wal@)] > k0" Hlog n)**} < k200>
Hence, sup,,|§m,,)|W,,(a)| converges 1o 0, with probability 1, as n — co.

ProoF. By (4.3) and (4.18), W.(a)+n*aB(F) = I,,(a)+1,,(a)+o(1). We shall
consider only the case of 0 < a £ g,(n) as the case of negative g follows similarly.

First, consider sup, s, |Z,,(@)|. Define x,* by 1 - H(x,*) = de;n™ H(log n)*, where
¢, and & are defined in (4.8). Then

(4.20) 1,.(a) = (5" + [2{J(nH (x)[(n+ D))= J(nH, (x)/(n+ 1))} dF (x + a)
=1, (a)+1,,,(a).

Now, proceeding as in (8) and (9) of Bahadur [2] and using our (4.16), we can
bound sUPq <4< guim |Hn.a(xn‘)_Ha(xn‘)| by {maxoélé[n‘/-] |Hn,nl(xn‘) - Hn,(xn.)l} +
O(n~*(logn)?*), where a; = jn~t(logn)/[n}], j=0, 1, -, [n]. Also, for each j,
nH, , involves a sum of i.d.d. bounded rv's on which Theorem 1 of Hoeffding [12}

yields a bound essentially the same as in (4.9)-(4.10), and hence, by the Bonferroni
inequality along with (4.16), we obtain the following:

LEMMA 4.4. For every s(> 0), there exist positive constants (¢ ", ¢,'?) and an ny
such that for all n 2 n,,

(4.21)  P{sUPosugaum | Hna(x,*) — H(x,*)| > ¢, "'n"¥(log n)*} < ¢,!Pn >
By (4.17), (4.21) and some simple manipulations, we have for n 2 n,,
(4.22)  P{supogasguml! ~H,u(x)] € 3[1 - H(x)], forall 0 £ x < x,*}
21 =4+ N2

A direct use of (4.22) along with (2.5) leads to the following: for all n 2 n,

,on n -
@23 p ‘(J i {OH (x)+(I —B)H,,.,(x)}>‘ < 3K|:l “arl H,,_,(x)] ,
forall 0 s x<x,*0<a=<g(n) and 0 <O <1

2 1—(d+c M
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Thus, by (4.17y and (4.23), for » 2 a,, with a probability & 1—(4+¢, )2,
89P0 cagontnr Hazs(a)|
S 8UPo<ag i |J5° N[ HAx)— H, (x)] - J'(n{6, H(x)
+(1—0H, (x)}/(n+ 1)) dF, (x)| (where 0 <6, < 1)
4.24) S {SUPo <u5 o BUPx 1 {H,, (x)— H ()|}

foaw [ [f-r o} a0}

S {2n"Ye (log nY[ 1+ O(n~ ¥(log n)]}

w n .
for [, - oso] " amto}
= [O(n~¥(log ny")][O(log n)] = O(n~*(log n)** 1)],
uko (811 ~nH, J(n+ D]dH, , = n~' Ti_ (1 —il(n+1)"" S ((2+ 1)1 +logn).

(4.25)  3upo <oz m(m |1a12(a)] S sUPg caguimln? f2 J(NH () (n + 1)) dF (x + a)]
+supo(,Sn(.)[n*I::_.J(nH,.,(x)/(n +1))dF,(x+a)]
As J(u) is 1 in « and dF, < dH,, by (2.6), for every a > 0,
n* 2. J(nH (x)/(n + 1)) dF (x +a)
S nd 2o, J(nH (x)(n+ 1)) dF (x)
(4.26) < nt 2. J(nH (x)/(n + 1)) dF (x)
< Knt [2.{—log(l —nH (x)/(n+1))} dH.(x)
< n*K[1— H(x,*)](log(n+1))
< 8Kc,n"t(logn)*t!, with probability 2 1—¢®'n~?,
forall nzn,

by Lemma 4.4 and the definition of H(x,*). A similar proof holds for the second
term on the r.h.s. of (4.25). Hence, for n 2 n,,

4.27) P{Supg cogpuim [1a12(8)] > K0~ H(lognp* '} < K, P2,

where K\, K® are positive constants, depending on s(> 0). Now, writing
X () = max, 5,5, X,, we may rewrite /,5(a) in (4.3) as

(4.28) 1,2(a) = O, if X, S0,
= l,21(a)+1,35(a), if Xw>0,
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where
(4.29) 1,2,(a) = n* [§ JLH()] d[F(x)— F(x +a)]
= n} [ [F(x+a) = F(x)}J'(H(x)) dH(x),
(4.30)  1,;5(a) = nt f§[J(nH (x)/(n + 1)) = J(H(x)] d[F,{x)— F (x +a)].
By (3.6) and (4.29), whenever X,; > 0,
SUPo ga g guim |T21(a) — n¥aB(F)|

S SUPoga s auimi|an? §Fen, SO (H(x)) dH(x)|
(4.31) +nt |j{,‘(~> [Fux+a)—F(x)—af (x)]J'(H(x)) dH(x)|

= {(log n)* %,/ (x)J'(H(x)) dH(x)}

+5UP0 50 s gutm SUP {1 |Fox + @) — Fo(x) — af (O} J(H(X (),

while if X, <0,
(4.32) SUPo 505 gu(m IanI(a) - ”*GB(F)I = (log n)*B(F).

Since, P[F(X) S 1—n"¥ =(1—n"¥" S en™*, ¢ > 0, foralln 2 n, and (2.8) holds,
the first term on the r.h.s. of (4.31) is bounded by 2[sup, f(x)J'(H(x))][1 — F(X,,)].
(logn)* < n™*(log n)*[sup, f(x)J'(H(x))), with probability 2 1—cn”?, whenn = n,.
Again, P[1—-F(X,) <n “*Y]=1—-(1-n"*"'y"<n™% and hence, by using
(2.6) and Theorem 4.2, for all Fe #4(J), the second term on the r.h.s. of (4.31) is
bounded above by cn~i(logn){1+ O(n~t(logn))IK{—log[1—(1—n"*"H]} =
en~Hlogn)**!. K(s+ 1)[1 + O(n~*(log n)*], with probability = 1 —5n7*. Further,
(4.32) occurs with probability 27", Hence, upon notingthat 2" can be made smaller
than n™%, 5 > 0, for large n, we obtain that for all n 2 n,,

(4.33) SUPo 505 uem | Tn21(@) — ntaB(F)| £ K, n~¥logn)**!,

with probability 2 1 —K,“'n~*, where (K,*, K,‘*) are positive constants, depend-
ing on s(> 0). Finally, we rewrite 7,,,(a) in (4.30) as

439 nTYLIHLX DI+ D)= JH(XDH(X ) — (X +a)}.

Since c(X))—c(X;+a) =0 unless —a < X, <0, and f, = sup, f(x) < c0, on using
(4.34), Theorem 4.2, Lemma 4.1, and noting that J'(u) is bounded in the neighbor-
hood of 0, we have

SUPo a5 outn) |In22(a)|
(4.35) £ {|n*[F 0 — Fu(— 9(n))]| 5uPo sa 5 gutm [ (11 + DH,(x))— J(H(x))|}
< [fotlog n)* + ¢, 'n " *(log n)*1[suPo sa g.im I (H(a))][2¢,n ™ *(log n)*]
< (const.)(n"*(log n)**), with probability = 1 —(d4+¢, )2,

for nzn,,
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where ¢,), ¢,*! are defined in (4.5) and c, in (4.8). The proof of the theorem then
follows from (4.20), (4.24), (4.27), (4.28), (4.33) and (4.35). )

We shall now prove that when F is symmetric about 0 and J,(u) is specified by
(b) of Section 2, then T,* = n(T,—pu/2), n 2 1, forms a martingale sequence with
respect to a non-decreasing sequence of o-fields 4, defined as follows.

Let ¢, = (e(X,), -+, e(X,)) and R, = (R,,, ' - -, R,,), where the R, are defined in
(2.1). @, is the o-field generated by (c,, R,). Then, obviously 4, is 1 in n, and we
prove the following theorem to be used in proving the “uniform continuity in
probability” (to be explained in Section 5) of the estimates 8, , and 8,,.,.

THEOREM 4.5. If J, (i) = EJ(Uy), i=1,--,n, and if F(x)+F(—x) =1, for all
real x, {T,*, #B,} forms a martingale sequence.

ProOF. By definition in (2.2),
4.36)  E(T,e|B) = (n+ )7 312 E{c(X ), 1 ((n+2)7 'R, ) | B)
=(n+ 1~ '[ZL 1 C(XJ)E{Jn+ W((n+2)" IR;.* W | gn}
+E{c(X s s Was (0 +2)" " Roy 100 )| 8,11

Under the hypothesis of the theorem (cf. [10] page 40), ¢(X,,,) is independent of
R, ., 1.+, and of &,. Also, given (c,, R,), R,,,,+, can assume all the n+ 1 values
1, -+, n+1 with the common probability 1/(n+ 1). Hence,

4.37) E{c(X e i Was 100 +2)" ' Ryy 100 1) | B0}

=[2n+ D] 32 e s GKn+2)) = 4,4 ¢,
where J,, , is defined in (2.9). It is easy to see that
(4.38) Jo=n"tYio, J(if(n+1)) = [§ J(u)du = u, forall nzI.

Also, given R,, R,,,; can either assume the value R,; or R+ with respective
conditional probability (n+1— R, )/(n+1) and R,,/(n+1), fori=1, -, n. Hence,

E{J,s ((n+2)"'Rys1)| B,)
(4.39) ={(n+1=R)/(n+ D} (Ruf(n+2))
+{Rad(n+ 1)} (R + 1Df(n +2))
=J (R /(n+1)), 1sisn,
after using the fact that by definition of J,4 \(i/(n+2)), S i< n+1,
4.40)  {(n+1—)(n+ D)W, (if(n+2))+ {iJ(n+ DM (i + Di(n +2))

=J(if(n+1)), 1sisn
Hence, from (4.37) through (4.39), we obtain that
441 E(Tyoy |8, = (n+ 1) {Tiay e(X)JRul(n + 1)+ dut}

=(n+1)"{nT,+4u}, nzl
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This implies that for 7,* = n(T,—4u),
(4.42) ETS,|#)=T" forall nz1. []

REMARK. The theorem may not hold when J, is defined by (a) of Section 2.
However, if J(u) is convex, then it can be shown by the same technique that
(nT,,} forms a sub-martingale sequence with respect to %, even when J, is defined
by (a) of Section 2. Also, if F is not symmetric about O, the martingale property
does not hold. However, as J, > 0, it follows by the same technique that {nT,}
forms a sub-martingale sequence with respect to 4, when J, is defined by (b) of
Section 2.

5. Proof of Theorem 3.1, We do it in several steps. First, let us prove the following
lemmas.

LEMMA 5.1. For every s(> 0), there exist positive constants (¢!, ¢,*) and a
sample size n,, such that for all n 2 n,,

5.1 P{n¥(B,,—0)+ 1, A[2B(F) < —c,"(logn)?} < ¢, P'n"3,
(5.2) P{ni(By,—0)—1,,2 A[2B(F) > ¢,' (logn)?} < ¢\ ¥n"".
PrOOF. We only prove (5.1) as (5.2) follows by analogy. Now,
P{n*(0.,—0)+1,,, A[2B(F) < —c," Y(logn)?}

(5.3) = P{B,, < 68—n"t1,,, A]2B(F)—n"tc!"(log n)?}
= Pooo{ T(X, + {n73[1,,2 A2B(F)+ ¢ V(log n)*1}1,) < T3},
where T = du+3(An" 1) +oln 1),

Let us define T, = T(X,+n" ¥(A1,,,/2B(F))1,) (where 0 =0 without any loss
of generality), and let T, = T,(X,+ {n™¥(r,,,4/2B(F)+c " (logm)®)}1,]. Then, by
Theorem 4.3, with probability 2 1—&2n"%, |[n¥(T,— T,)— B(F)c(logn)?| =
k{"'n"*(logn)*. Hence, it suffices to prove that for large n, P{n}|T,— T} 2
B(F)c,*(logn)?} < ¢,**n"*, where ¢,* (< ¢,!") and ¢,** are positive constants.
We now write @ = n~¥Az,,,/2B(F), and define H,(x), H,.(x) and F,,(x) as in
Section 4. Then T, = [ J(nH, (x)/(n+ 1)) dF, (x), and it can be shown by some
standard computations, as in Section 4, that T{Y = [§ J(H(x))dF(x)+o(n™}).
Hence, it is enough to show that for every s > 0, there exists an n, such that for
nzn,

(54)  P(n*|[§ J(nH, ()(n+ D) AF, ()~ [5 J(H(x) dF ()] > ¢,*(log n)?}
Sc*n7t
The Lh.s, of the inequality within the parentheses in (5.4) can be written as
(5:5)  n¥ [ H(nH, ())(n + D) A[F, (%)= Fu(x)]
+0} {§ {InH, ()](n+ 1) = J(H N} dF(x) = 1 +12 (say).
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Then, by Lemma 4.1 and (2.5), we have
n=H L | = (0f(n+ 1) [J§ [Faolx) = Fux)]'(nH, i(x)/(n+ 1)) dH, (x)|
S(n+D)7EYL [FAX i+ a)—F(X+a)| |7 (n+1)” 'R.(a)|
(5.6) < [Supy 5150 |Fu(X i+ @)= F(X +a)|][(n+ 1)7' 202, U Gif(n+ )]
S [efVn"Hlogn) ] [K(n+ 1) Y 7=y (n+ 1)j(n +1-)]
< Ke,'V'n~Y(log n)¥[1+(logn)], with probability = 1—¢,%n",

where R, (@) = Y}, c(|X,—a|—|X,—a|). Again, essentially repeating the steps as
in (4.20) through (4.27), it follows that for every s(> 0), there exist two positive
constants 4,1, 4, and an n,, such that for all n 2 n,,

5.7 P{|1;| 2 4, ’n"¥(logn)}} < 4,0,
This completes the proof of the lemma.

LEMMA 5.2. For every s(> 0), there exist positive constants (c},, c%) and an n,,
such that for all n z n,,

(5.8) P{|B(F)n*(By,.— 8. ) AT, — 1| > ey n™H(logn)’} S cfhn.
PROOF. By virtue of Lemma 5.1, we have with probability 2 1—2¢,'n"*,
(5.9) 6—n"4{(At,2/2B(F)) + ¢, (logn)?} < 0., < 8y,
< 0+ n" (A, /2B(F))+ ¢, P (logn)?).
Hence, the proof directly follows from Theorem 4.3. []

Lemma 5.3. {8, ,} and {B,,} are uniformly continuous in probability with respect
to {n~%}, ie., for every positive ¢ and n, there exists a (> 0), such that as n — o,

(5.10) P{SUP|y — ) <t [n*@p =80 > 1)} < e
(5.11) P{SUP|u'—n|<u|"’(9u,n'—9u...)| >n}<e

PRroOF, Write n*(8, . — 8, ) = (n/n)}(')}(8, . —0)—n¥(8, ,—6). By Lemma 5.1,
Theorem 4.3 and (2.12), we have with probability 2 1—c%(n *+n""%) (for
large n),

n¥0,,—0,,,) = A2/ BOF)[(njn')t—1]
+ [n¥H{ T(X,— 01,) — (X, — 01,)} 1/ B(F) + o(1).
Thus, it suffices to prove that under the hypothesis F is symmetric about 0,
(5.12) lim,—. o, P{SUP| —ny < 1} | T(X,) = T(X,)| > 1|6 = 0} <.

Define 7,* as in Theorem 4.5. Then, routine computation yields that E(T,*) = 0,
E(T,*') = nA,?/4, where 4,2 is defined in (2.9). As {7,* #,} forms a martingale
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,wence ul. Mheorem 4.5), by using the Kolmogorov inequality for martingales
(see Loéve [14] page 386), we get

(5.13) P{Suplsns[a.)|7:..+t—n.l > ‘}
S AT T
=}t 2[(" + [’5“])A5+(u1 - "A-z]-
Put ¢ = n,n* and note that 4,2 = 424 0(1). Then,
(5.14)  P{sup; gugpam [((n+ kYN T, oo — T, + kpj2n| > nyn" 4} S, "2[84% +o(1)].
Since k/n <6 and 0 £ T, S u, forall k 2 1, we get
(5.15) P{SUP,gu gnsram ‘T,,(X_)—- T.'(x,.')| >n|8=0}<en2
Proceeding similarly when n—[6n] < n" £ n, we get (5.12). The proof of (5.11) is
analogous.
We may observe that by virtue of (2.14), (5.10) and (5.11) remain true for both

the cases where the scores J.(i/(n+1)),i =1, -, n, are defined by (a) or (b) of
Section 2.

LEMMA 5.4. Lim, .. P{n*(8, ,— 8)2B(F)/A+1,; S x} = ®(x), defined by (2.13).

PrOOF. See Sen (18],
Define n,(d) = [w(d)(1 —¢)] and ny(d) = (Md)(1+e&)+1]. Then, we have the
following:

LeMMA 5.5. limy- ¢ D o =nyey P{N(d) > n} < o0.

PROOF. Y2 0 P{N() > n} =Y 2 0 P{r¥8,,—8,,) >2drt, for all
r=1,, 0y SYE 0 Pint(8y,—0,,) > 2ntd}. Since for n = n,(d), 2dn*2
2d[ny(d)]} = [At,,,/B(F)I(1+¢), where &3 <¢ <¢/2, and as by Lemma 5.2,
|48y, —8, ) — At/ B(F)| 2 ¢]yn”*(logn)® with probability < ¢hn”"(asn — o),
by letting @ — 0 (i.e., n,(d) — o) and 5 > 1, the lemma follows drrectly.

Proof of the main theorem. It follows from Lemma 5.2 and the definition of
N(d) that N(d) is finite a.s. for all d > 0 and is a non-increasing function of 4.
Lemma 5.5 and some simple manipulations prove that £¥(d) < oo, for all d > 0.
The remaining statements of (3.3) follow from the definition of N(d) and the
Monotone Convergence Theorem. We obtain (3.4) from Lemma 5.2 and the
definition of v(d). Again, Lemmma 5.3 and Lemma 5.4 show that the two basic
conditions of “‘uniform’ continuity in probability with respect to n~ %" and asymp-
totic normality, as prerequisite for Theorem 1 of Anscome [l] are also satisfied.
Hence, (3.5) follows from Theorem 1 of [1].

To prove (3.6), consider

§5.16) VIHADE[N@)] = v {D[Z + Y2+ nP{N() =n)}],

where 3, extends overall n < n,(d), 3., over all n:n,(d) < n < ny(d) and ¥, over all
n 2 ny(d).Sincelim, ., v(d) = coandlim,..o, N(d)/v(d) = 1a.s., foreverye( > 0),there
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exists a value of d, say d,, such that for all 0 < d S dy, P{n(d) < N(d) <ny(d)} 2
P{|N(d)/u(d)—1| < €} = 1 —n, n being arbitrarily small. Hence, for d < d,,
(5.17) v {(d) 3, nP{N(d) = n} < (1 -e)P{N(d) = n,(dD)} S n(1—e).
Also, for all n,(d) < n < ny(d), |n/»(d)— 1| <, and hence,
(5.18) P Y nP{N(d) = n}—1| S eT, P{N(d) =n}+n Se+n.
Finally,
v~ (d) Ty nP{N(d) = n}
(5.19) = v~ d) T3 P{N(d) > n}+v™(d)n (d)P{N(d) Z ny(d)}
SVTHD L P{N() > n}+(1+2+v™  (@)P(N() 2 ny(d)}.
Since v(d) — oo as d — 0, using Lemma 5.5, both the terms on the r.h.s. of (5.19)
converge to 0 as d — 0. Thus, (3.6) follows from (5.17), (5.18) and (5.19). [

REMARK. Since Py{fel,} =1—a,(— 1—a as n - o), for every non-random n,

one can naturally ask whether (3.5) holds for a general “‘stopping variable™ N()
(a positive integer valued rv, not necessarily defined in the same way as in our
Section 2). The answer is in the affirmative when there exists a sequence n(t) of
positive integers such that
(5.20) lim,_on(t) =00 but lim,,,N()/n(1) =1, in probability.
In such a case, one can use Theorem 2 of Pyke and Shorack [17] to represent Ty,
as a functional of an empirical process (related to the tied down Wiener process),
where our Theorem 4.3 or Brillinger’s {4] theorem gives us the access to prove the
asymptotic (a.s.) linearity of this empirical process, and hence, Theorem 1 of
Sen [18] readily extends to random sample sizes, under (5.20). However, the proof
of (3.6) for such a general stopping variable demands the details of the order of the
tail probabilities as have been provided throughout Section 4 and Section 5.

6. Asymptotic relative efficiency (ARE). Suppose we have two bounded length
confidence interval procedures 4 and B for estimating the median of a symmetric
distribution by means of an interval of length < 2d, d > 0; if N (d) and Ny(d)
denote the stopping variables and P,(d) and Pg(d) the coverage probabilities of
the procedures 4 and B respectively, then we define the ARE of the procedure 4
with respect to the procedure B by
(6.1) ea.p = limy_ o{ E[N s()J/E[N ()]},
provided limy_q P(d) = lim,_, Pp(d) and either of the limits exists.

Let S and C stand for the procedures suggested by us and that by Chow and
Robbins [6]. Using (3.5) and (3.6) of Theorem 3.1 and the corresponding results
of [6), we get that under the assumption g% = Var(X,) < o,

(6.2) es.c = 462 B*(F)/ A%
The above is the Pitman-efficiency of a general rank order test with respect to

Student’s ¢-test. In the particular case of the normal scores statistic where J(u) =
@~ '((1 +u)/2), (® being the standard normal df), (2.4) bolds and it follows from
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the results of [5] that eg ¢ 1, for all df F with a density function f and a finite
second moment, the equality sign being attained iff F is itself normal (0, o2).
Hence, in that case, the ARE of our proposed procedure with respect to the
Chow-Robbins procedure is 2 1, the equality being attained iff the parent df is
normal.

In the particular case, when J(u)=u (i.e., Wilcoxon scores), esc=
120°[[=, f%(x)dx]* and this includes Geertseema’s [9] e(W, M) expression as 4
particular case of the sequential procedure suggested by us.

Acknowledgment. The authors are grateful to the referee for his valuable
comments on the paper.
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