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ABSTRACT

In this paper a new characterization for modular sets and a generaliza-
tion of the well known Three Modules Theorem are presented.

1. Introduction

A simple game is conceptually equivalent to a coherent system in
reliability theory (14), [6)). The characterization of modular sets of
coherent systems and simple games has been extensively investigated ({3),
4], [6) and [8)). In a recent paper, based on analogy with graph theory
and marroids, an operation called contraction was introduced for simple
games as well as coherent Using ion, a new ch iz~
tion for modular sets was given (7). In this paper, we again make usc of
contraction o obtain an yet another characterization for modular sets.

The Three Modules Theorem is well known in literature. Proofs of this
theorem have been given in the context of switching functions (1], coh
systems 3] and simple games [8). In this paper we give a generalized

version of this Theorem.

Consistent with our earlier paper [7]. we shall use the set up of simple
games in this paper also. However, all the results hold true for coherent
systems also,

2. Preliminaries and Notations

Let N denote a finite nonempty set. A simple game A on Nisa
function A : 2¥ — {0, 1} satisfying : (i) (¢) = 0. (ii) A (N) = 1 and (iif)
A (5) € ) (T), whenever S g T. Elements of N are called players and
clements of 2V are called coalitions. A coalition S is called wining (losing)
if A (S)=1 (0). A coalition S is called blocking if A (N-S) =0. A
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winning (blocking) coalition S is called minimal if T C S implies A (T)=0
(A(N-T) =1). We shall denote by a(d) and B (), respectively (the
collections of minimal winning and blocking coalitions of A. It is well
known that a coalition S is winning (blocking) if and only if SNT¢ ¢ for
AlTEB () (a (A). A player { iscalled a dummy if A (S U [{1}) =
MS-{i}) for all S$ g N. We shall assume throughout this paper that there
are no dummies in the game A or equivalently for any { € N there exists &
Pea(r)anda Q ep (M) suchthat i€ Pand i€ Q.

The dual A® of the simple game A is again a simple game on N defined
by A® (S) = 1—A (N-S) for all § & N. It is well known that a (A*) = ()
and B (A*) = a ().

Let A, and A4 be two simple games on Ny aad N,, respectively. We
define the composite simple games Ay X A and A;+A, 00 Ny U Ny by

(A1xA) (5) = AL (SNN) A (S N Ny,
MHA) (8) = 1=(1=4 (S O Ny) (1=24 (S N M),

forall S My U Ny Itis easy to verify that (A xad® = &) + 1, .

Let X be a simple game on N and 4 be a nonempty subset of N. We
call A a modular set of ) if exactly one of the following to assertions holds
true forany S @ A :

(A (SU X) =A(X)forall X ¢ N—A,
(i) A(SU X) =A(4U X)forall X & N—A.

The modular sets are also called committees [8]. We scc that N itself
and all singleton subsets of N are modular sets of . The module corres-
ponding to a modular set A is a game 8 on A4 defined by

‘' 0 if (i) holds true,
8(9) =

1 if (i) holds true,
forall S g 4.

3. Some Results on Modular Sets

Throughout this section A desotes a simple game om N (without
dummies) and A is & nonempty subset of N. The contraction of A to A is
a simple game on A, denoted by A.4 where for any S € 4, (A.4) (S) =0
if and only if A (S U X) = 0 for all X ¢ N-A such that A (X) = 0[7).

Leuma 1. (A.4)(S) = max (AM(S O X)—A (X)) forall S g A.
Xg N4
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Proof. By definition of A.4 we note that (A.4) (S) = 1 if and only ir
there exists 8 X SN-A such that A (SU X) =1and A (X) =0. The
required assertion is immediate.

LemmA 2. Forany S A, (A.A)(S) = | if and only if there exists a
Pea()suchthat PN Azt dand SOPN A
Proof. Let § be such that (A.4) (S) =1. Then there exists a

T & N-A such that A (T) =0 and A (S U T) =1. This implies the
existenceof a P€ a (A)such that S U T 2 P, Wenotethat PN A =¢

implies T2 P or equivalently A (T) =1; leading to a contradition.
Hence we must have PN A 5% ¢, It followsthat S=(SUT)NAD

P N A. Conversely let P € a () be such that PN A & ¢. We note that
A (P-A) =0 and (P N 4) U (P-A) = P or cquivalently A (PN A) U
(P-A)) = 1. Therefore we have (A.4) (PN A)=1. It follows that
AA)(S)=1tlorall SO PN A

LemMAa 3. a(AA)={S:S=P N A P¢ca (X)and S is minimal
with this property).

Proof. The required assertion is a trivial consequence of Lemma 2.
(sce alsa [7, Lemma 1]).

Lewoia 4. (4*A)° (5) = min 3 (S U X)=2 (40 0+1) for all Sg A
G N-A

Proof. (A*.A)* (S)= 1—(A%.4) (4-S),
= l—max (A*((4-5) U X)) —*(X)).
Xg N-A

= min (12° ((4-S) U X) +A* (X))
XgNA

= min (+A(SU XN—=r(4U X))
X g N-A

Lemua 5. (A.A) (S)* = 0 = (A%.4)* (S) = 0.

Proof. Let S g A be suchthat (A.4) (S) = 0. Since there are no
dummies, there exists 8 P€ « (A) such that PN A 5% ¢. We note that
X =P-Ag N-Aand A (X) = 0. Since (A.A) (S) =0, it follows from
Lemma 1 that A(S U X) =0. We observethat A U X = 4 U (P-A)_;)
P; thatis A (A U X) = 1. It follows from Lemma 4 that (A*.4)* (5) = 0.

LEMMA 6. .4 = (A®.4)* if and only if (\*.4)* (P N A) = I for all
P € a(X)such that P N A £ ¢.

Proof. In view of Lemma 5, we note that A.4 = (A*.4)* if and only if
(A.4)(S) = 1 &> (A*.4)* (S) = 1. By Lemma 2, (A.4) (S) = 1 if and only
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if S DPN A for someP¢a(d)suchthat P N A5 ¢, The required
assertion is immediate.

LexMA 7. If B is a nonempty subset of A, \.B = (\.A). B.
Proof. Trivial consequence of Lemma 3.
In Lemma 8, we give a simple proof of the main result in [7].

LemMA 8. A is a modular set of ) if and only if \.A = (A%.A)*. In this
case the corresponding module is given by \.A.

Proof. We recall that A is a modular set of A if and only if for all
Sed:

A (SUX)—X (X) 3 (=) O for some (all) X & N-4 & A (AUX-A(SUX)
= (5%) O for all (some) X g N-A.

The required assertions follow from Lemmas 1 and 4.

Let A be a modular set. Butterworth ({4, p. 594) has shown that
PNQNMAZESforalPea(d) Q€ B (2) such thatPM A #¢ and
QN A3 ¢. This result also easily follows from Lemmas 3 and 8. In
Theorem | we prove that the converse is also true.

THEOREM ). A is a modular set of Aif andonlyif PO QN AH£$
forallP€a(Nand Q € p(A)suchthat PN AF# $and Q N A # ¢.

Proof. We need to prove only the if part of the theorem. In view
of Lemmas 6 and 8, we need only to prove that the conditions stated in
the Theorem imply (A*.4)® (P N A) = 1 for all P € a (A) such that P N A
# ¢. We note from Lemma 2, that S § A is winning in A®.4 if and only
ifS 2 QN Aforsome Q € a (A%) or equivalently 0 € B (4). Let Péx (A)
be such that P N A 32 ¢. By hypothesis we have (P N 4) N (@ N A4)
# ¢ for all Q€B(2) such that Q N A # ¢$. It follows that PN 4
is blocking in A*.A or equivalently winning in (A®.4)*%.

We require the results of the following three lemmas for the purpose
of generalization of the Three Modules Theorem. Lemma 10 which is
called the Two Modules Lemma is due to Butterworth,

LemMA 9. Let A be a modular set of A and B be a nonempty subset
of A. Then B is a modular set of X if and only if it is a modular set of A.A
(see [2, p. 18] and [4, p. 595)).

Proof. Since A is & modularset of A, we lude from Lemma 8 that
XA = (A%A4)* or cquivalently (A.4)* = A.4. By making usc of Lecmma
7, we get
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AB = (A%.B)* @ ((AA). B) = ((A*A). B)* © (\A). Bm((A.A)*. B)®
Levua 10, If A is proper subset of N then A and N-A are both modular
sets of X if and only if either X = (\.A) X (A(N-A)) or A = (\4)
+ (A(N-4)).

Proof. See [4, p. 596].

LevuMa 1], Let Ay, A4y...., Ay be k (D 2) disjoint nonempty subsets of N such
that all the 2*—1 sets obtained by considering the union of one or more sels
in the collaction {A),A,,...,Ax} are modular sets of \. If A = A, U Ay ..U Ax
then \.A is either equal 1o (\.A) X (\.4) X ... X (AA) or (\.A) + (A.A4)
+ot (AR, )

Proof. We verify first that the assertion is true for k = 2. By hypothesis
Ay Ay 8nd A, U A, are modular sets of A. By Lemma 9 we see that 4, and
A, are modular sets of A.(4; U A4,). The required assertion for the case
k = 2 follows from Lemma 10. We shall use induction to show that the
assertion is true for all k such that 2 C k € | M| . Let the assertion be
true for k = r where rissuch that 2 { r < | N|. Consider now the
case k = r+1, Let B = 4, U 4,...U 4. Wenote that 4 = B U Ave,.
The hypothesis of the Lemma states that 4,8 and Ary, are modular sets of
A.By Lemma 9 we conclude that B and Ary, are modular sets of A.4.
Since A = B U Arsy, it follows from Lemmas 9 and 10 that either
AAd = (AB) X (AAryy) or A.A) = (A\.B) + (A\.4/,,) Since all of the 2'—1
sets obtained form the collection {4,,4,,...4,} are modular sets, it follows
from the induction hypothesis that A\.B is either equal to (A.4) x (\.4p
X... X (hAr) or (A + (A4 + ... + (\.4,). [tis enough to show that

AA = (AB X (Adre)) 2 AB = (AA) X (A dg) X...X(NA)),
AA = AB) + (A Ary) 2AB = (\A)) + (\Ay) ...+ (AA).

Suppose 2B = (\.A) X (\.Aryy) and AB = (.4) + (M. 4y) +...+ (\40).
We shall show that this will lead to a contradiction. We note that

Od = [0 A) + Ay +.. +(AA)] X (MAryy).
Consider the set D = 4, U Aryy. We note that D is a modular set of A
and by Lemma 9, it is also & modular set of A.4. Since Aryy C D, exactly
one of the following two assertions must be satisfied:
@) (A) (g U XD = AA) (X) forall XC 4-D,
(Ili) QuA) (Ari U X) = .A) (D U X) forall X € 4-D.
Let C =4, U 43U ... U Ar-;. We note that C g A—D. It is easy to

verify that (0.4) (C) =0, (7.4) (4ryy) =0, (A.A) (4ry; U C) =1 and
(\A) (D) = 1. We see that (f) is violated for X = C and (if) is violated
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for X =¢, Honce D is not a modular sota of \.4 leading to & contradio-
tion. The proof of the implication

(A A) = O.B) + A dry)) > AB= (A A) + (A4 + ... + (0As),
is similar.

We now state the Three Modules Theorem and for its proof we refer to
(3] or [4).

Three Modules Theorem: Let A,, Ay and A, be disjoint nonempty subseis
of N. If A, U A, and A, W A, are modular seis of A then

(i) Ay, AuAg, Ay U Ay and A\ U A, U Ay are all modular sets of ),

(i) A. (4, U Ay U Ay) Is equal to elther (A.A) X (AAD X (A\.Ay)
or (\4) + (A4 + AAy).

In Theorem 2 we state and prove a lization of the Three Modul
Theorem.

TuBOREM 2. Let A,,...,A,..., Ay be (k > 3) disjoint nonempty subsets of N
such that Ay U Ay Ay U A...., Ak-y U Ax are modular sets of A If
A=A U A U ... U Ak, then

(1) All the 2x—1 sets obiained by considering the union of one or
more sets in the collection {A,,A,,..., Ax} are modulur sets of A.

(M) A.Ais either equal 1o (A\.A)) X (\.Ay) X...X(A.4s) or (A A) + (A.Ap
Fot (WAL,

Proof. Using Lemma 11 we note that (i) implies (ii). Hence it is sufficient
to establish (f). By tho Three Modules Theorem we sec that the assertion
is true for kK = 3. We shall usc induction to prove the general assertion.
Suppose the assertion is true for k = r where 3 r< | N|. We first
show that for any i and j such that | i#£jg r + 1. 4, U 45 is a modular
of A. Without loss of generality let j > i. If j = i 4 1, there is nothing to
prove. So letj > i + 1. By hypothesis of the theorem A, Aie,. Aryq 8re
disjoiat nonempty subsets of N such that 4¢ U Ay and Ag, U A¢yg 81
modular sets of A. By the Three Moudules Theorem we conclude that
At U Aiqeq is 8 modular set of A. Now coasider disjoint nonempty subsets
AnAy, and Ay, Since A¢ U Aiyy and Aty U Aty are modular sets of A,
we conclude from the Three Modules Theorem that AcU Aiyy is a modular
sct of A and so on. From this result and the induction hypothesis we
can conclude that all of the 27+!—~2 scts obtained by considering the union
of ror lcss sets in the collection {4, 4y,..., Ary,} arc modular sets of A.
Thus we need only show that A, U 4, U ... U 4ryy is 3 modular set.
For this purposo consider the nonempty disjoint sets Ay, Ar; and
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Be=A UA4AU..U 4. Wenote that B U 4, and 4, U 4.y, are
modular seta of A, By the Three Modules Theorem we see that
Ay U 43 3 ... U 4r U Aryy is a modular set of A.

COROLLARY. All the nonempty subsets of N are modular sets of \ if and only
if either a(d) = {N} or B (A) = {N}.

Proof. Suppose af)) = {N} and 4 = {j\.}, i} & N. It follows that
a(A4) = {4} and a(r®.4) = {{/i} (). It now follows that
2.4 = (A%A4)" ; that is 4 is a modular sct of A. The proof for the case
when p(A) = (N} is similar. This proves thé if part of the assertion.
The only if part follows from Theorem 2.
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