ON A GENERALIZATION OF MARTINGALES DUE TO BLAKE

R. SUBRAMANIAN

It is shown that any uniformly integrable fairer with time game (stochastic process) converges in L_1 .

1. Introduction. Let $(\mathcal{G}, \mathcal{X}, P)$ be a probability space and $\{\mathcal{U}_n\}_{n\geq 1}$ an increasing family of sub σ -algebras of \mathcal{X} . Let $\{X_n\}_{n\geq 1}$ be a stochastic process adapted to $\{\mathcal{X}_n\}_{n\geq 1}$ (see, [2, p. 65]). Following Blake [1] we refer to $\{X_n\}_{n\geq 1}$ as a game and define

DEFINITION. The game $\{X_n\}_{n\geq 1}$ will be said to become fairer with time if for every $\varepsilon > 0$

$$P[|E(X_n/\mathcal{U}_n) - X_n| > \varepsilon] \rightarrow 0$$

as $n, m \to \infty$ with $n \ge m$. Any martingale is, trivially, a fairer with time game and thus this concept generalizes that of martingales. Blake, in [1], gave a set of sufficient conditions under which any uniformly integrable fairer with time game $\{X_a\}_{n\ge 1}$ is convergent in L_1 . We show that these sufficient conditions are not needed; in fact, we show that any uniformly integrable, fairer with time game converges in L_1 .

2. THEOREM 2.1. Any uniformly integrable fairer with time game $\{X_n\}_{n\geq 1}$ converges in L_1 .

Proof. To facilitate understanding, we break up the proof into a few important steps numbered (S1) through (S5). For every m and $n \ge m$ define $Y_{m,n} = E(X_n/2\ell_m)$. Let Γ stand for the family $\{Y_{m,n}, for all m \text{ and } n \ge m\}$.

(S1) Γ is uniformly integrable.

Since $\{X_n\}_{n\geq 1}$ is uniformly integrable there exists a function f defined on the nonnegative real axis which is positive, increasing and convex, such that

$$\lim_{t\to\infty}\frac{f(t)}{t}=+\infty$$

and $\sup_{x} E[f \circ |X_{x}|] < \infty$. (See [2, H T 22].) Now,

$$\begin{split} E[f \circ \mid Y_{\mathbf{m},\mathbf{n}} \mid] &= E[f \circ \mid E(X_{\mathbf{n}} \mid \mathcal{U}_{\mathbf{m}}) \mid] \\ &\leq E[f \circ E(\mid X_{\mathbf{n}} \mid \mid \mathcal{U}_{\mathbf{m}})] \text{ (since } f \text{ is nondecreasing)} \\ &\leq E[E(f \circ \mid X_{\mathbf{n}} \mid \mid \mathcal{U}_{\mathbf{m}})] \\ &= E[f \circ \mid X_{\mathbf{n}} \mid] \end{split}$$

Therefore,

$$\sup_{Y_{\bullet,\bullet} \in F} E[f \circ | Y_{\bullet,\bullet}|] \leq \sup_{\bullet} E[f \circ | X_{\bullet}|] < \infty.$$

Another application of II T 22 of [2] ensures that Γ is uniformly integrable. Hence (S1).

(S2) Given $\varepsilon > 0$, there exists M such that for all $m \ge M$, one has

$$E(|X_{-} - Y_{-}|) \le 2\varepsilon$$
 for all $n \ge m$.

Since Γ is uniformly integrable given $\varepsilon>0$ there exists $\delta>0$ such that $P(A)<\delta$ implies $\int_A \mid Y_{m,n}\mid dP\leq \varepsilon/2$, for all $Y_{m,n}\in\Gamma$. Choose M so large that $m\geq M$ and $n\geq m$ implies $P[\mid X_m-E(X_n/U_m)\mid>\varepsilon]<\delta$. Then, it is not difficult to see that

$$E[|X_n - Y_{n,n}|] \le 2\varepsilon$$
 for all $m \ge M$ and $n \ge m$.

(S3) For every fixed m, the sequence $\{Y_{m,n}\}$ converges in L, to an \mathcal{U}_m measurable random variable Z_m .

Let $m \le n < n'$.

$$\begin{split} E[\mid Y_{\mathbf{m},\mathbf{n}} - Y_{\mathbf{m},\mathbf{n}'}\mid] &= E[\mid E(X_{\mathbf{n}}/\mathscr{U}_{\mathbf{m}}) - E(X_{\mathbf{n}'}/\mathscr{U}_{\mathbf{m}})\mid] \\ &= E[\mid E(X_{\mathbf{n}} - X_{\mathbf{n}'}/\mathscr{U}_{\mathbf{m}})\mid] \\ &= E[\mid E(\{E(X_{\mathbf{n}} - X_{\mathbf{n}'}/\mathscr{U}_{\mathbf{n}})\}/\mathscr{U}_{\mathbf{m}})\mid] \\ &\leq E[E(\{\mid E(X_{\mathbf{n}} - X_{\mathbf{n}'}/\mathscr{U}_{\mathbf{n}})\mid\}/\mathscr{U}_{\mathbf{m}})] \\ &= E[\mid E(X_{\mathbf{n}} - X_{\mathbf{n}'}/\mathscr{U}_{\mathbf{n}})\mid] \\ &= E[\mid X_{\mathbf{n}} - Y_{\mathbf{n},\mathbf{n}'}\mid] . \end{split}$$

Now from (S2) it follows that given $\varepsilon > 0$ for all sufficiently large n and n'

$$E[|Y_{m,n}-Y_{m,n'}|] \leq E[|(X_n-Y_{n,n'})|] \leq 2\varepsilon.$$

Hence, for m fixed, the sequence $\{Y_{m,n}\}$ is Cauchy in the L_1 -norm. So, there exists, an integrable random variable Z_m , such that, $Y_{m,n} \xrightarrow[n \to \infty]{L_1} Z_m$. Without loss of generality we can take Z_n to be \mathcal{U}_m measurable. (Note that each $Y_{m,n}$ is \mathcal{U}_m measurable and there is a subsequence $\{Y_{m,n}\}$ converging almost surely to Z_n .)

(S4) $\{Z_m, \mathcal{U}_m\}_{m\geq 1}$ is a uniformly integrable martingale.

The fact that $\{Z_{\mathbf{m}}\}_{\mathbf{m}\geq 1}$ is uniformly integrable follows trivially because the closure in L_1 of a uniformly integrable collection is uniformly integrable. (See, [2, II T20].) To show $\{Z_{\mathbf{m}}, \mathcal{H}_{\mathbf{m}}\}$ is a martingale it is enough to show that for every m, $E(Z_{\mathbf{m}}, 1/\mathcal{H}_{\mathbf{m}}) = Z_{\mathbf{m}}$ as. Since

$$\begin{split} E[|E(Y_{n+1,n}/\mathcal{U}_n) - E(Z_{n+1}/\mathcal{U}_n)|] \\ &= E[|E((Y_{n+1,n} - Z_{n+1})/\mathcal{U}_n)|] \\ &\leq E[E(|(Y_{n+1,n} - Z_{n+1})|/\mathcal{U}_n)] \\ &= E[|Y_{n+1,n} - Z_{n+1}|] \longrightarrow 0 \quad \text{as} \quad n \longrightarrow \infty \,, \end{split}$$

there exists a subsequence n' of $\{n: n \ge m\}$ such that

$$E(Y_{m+1,n}./\mathcal{U}_m) \xrightarrow{\text{a.s.}} E(Z_{m-1}/\mathcal{U}_m)$$
 .

We can assume (- if necessary, by choosing a further subsequence, -) that $Y_{\bullet,\bullet} \stackrel{\text{a.s.}}{=} Z_{\bullet}$. Now,

$$\begin{split} E(Z_{\mathbf{m+1}}/\mathcal{U}_{\mathbf{m}}) &= \lim_{\substack{\mathbf{n}' \to \mathbf{m} \\ \mathbf{n}' \to \mathbf{m}}} E(Y_{\mathbf{m+1},\mathbf{n}}/\mathcal{U}_{\mathbf{m}}) \quad \text{a.s.} \\ &= \lim_{\substack{\mathbf{n}' \to \mathbf{m} \\ \mathbf{n}' \to \mathbf{m}}} E(\{E(X_{\mathbf{n}'}/\mathcal{U}_{\mathbf{m+1}})\}/\mathcal{U}_{\mathbf{m}}) \quad \text{a.s.} \\ &= \lim_{\substack{\mathbf{n}' \to \mathbf{m} \\ \mathbf{n}' \to \mathbf{m}}} Y_{\mathbf{m},\mathbf{n}} \quad \text{a.s.} \\ &= Z_{\mathbf{m}} \quad \text{a.s.} \end{split}$$

Hence (S4). (S5) $\{X_n\}_{n\geq 1}$ converges in L_i .

Since $\{Z_n, Z_n\}_{n\geq 1}$ is an uniformly integrable martingale, there exists an integrable random variable Z_n such that $Z_n \frac{L_1}{n \to \infty} Z_n$. We shall show that $X_n \frac{L_1}{n \to \infty} Z_n$. From (S3) and (S2) it is easy to check that given $\varepsilon > 0$ there exists M such that for all $m \geq M$

$$\int |X_{m}-Z_{m}| dP \leq 2\varepsilon.$$

Therefore, for sufficiently large m,

$$\int \mid X_{\mathbf{m}} - Z_{\mathbf{m}} \mid dP \leqq \int \mid X_{\mathbf{m}} - Z_{\mathbf{m}} \mid dP + \int \mid Z_{\mathbf{m}} - Z_{\mathbf{m}} \mid dP \leqq 3\varepsilon \; ,$$

say. Hence (S5) and the theorem.

Since any game (stochastic process) $\{X_n\}_{n\geq 1}$ converging in L_i can be taken to be a game fairer with time, by setting $\mathcal{U}_n \equiv \mathcal{U}$ in n, we get the following corollary.

COROLLARY 2.1. Let $\{X_n\}_{n\geq 1}$ be a game. It converges in L, if and only if it is uniformly integrable and fairer with time with respect to some increasing family of sub σ -algebras $\{\mathscr{U}_n\}_{n\geq 1}$ to which it is adapted.

Let p > 1.

THEOREM 2.2. Let $\{X_a\}_{a\geq 1}$ be a fairer with time game with $\{|X_a|^p\}_{a\geq 1}$ uniformly integrable. Then $\{X_a\}_{a\geq 1}$ converges in Lp.

Proof. Noting that the function f defined on the nonnegative real axis by $f(t) = t^p$ is positive, increasing and convex and $\lim_{t \to \infty} (f(t)/t) = +\infty$, in view of II T 22 of [2], it is clear that $\{X_a\}_{a\geq 1}$ is uniformly integrable. Hence by Theorem 2.1 it converges in L_i ; in particular, $\{X_a\}_{a\geq 1}$ converges in probability. Therefore, $\{X_a\}_{a\geq 1}$ converges in L_a . (See Proposition II 6.1 of [3].)

COROLLARY 2.2. The game $\{X_n\}_{n\geq 1}$ converges in L, if and only if $\{|X_n|^p\}_{n\geq 1}$ is uniformly integrable and $\{X_n\}_{n\geq 1}$ is fairer with time with respect to some increasing family of sub σ -algebras $\{Z_n\}_{n\geq 1}$ to which it is adapted.

REMARK. In view of our Theorem 2.1, the second convergence theorem of Blake in [1] becomes redundant.

REFERENCES

- L. H. Blake, A generalization of martingales and two consequent convergence theorems, Pacific J. Math., 35 (1970), 279-283.
- P. A. Meyer, Probability and Potentials. Blaisdell Publishing Company, Waltham, Massachusetts, 1966.
- J. Neveu, Mathematical Foundations of the Calculus of Probability. Holden-Day, Inc., 1965.

Received March 10, 1972.

INDIAN STATISTICAL INSTITUTE CALCUTTA-35, INDIA