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Abstract: Algorithms for automatic selection of seed points for clustering are described using the terms ‘index of fuzziness’,

‘entropy’ and ‘n-ness’ of a fuzzy ser.

Two membership functions in R" have been defined such that the fuzzy measures posses maximum values when the cross-
over points/central points of the membership funciions correspond 1o the points around which the data has a tendency to
cluster. The effectiveness of the algorithm is demonstrated on a set of speech data.
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1. Introduction

The aim of a clustering technique is partioning
a feature space into some homogeneous groupings.
The criteria of clustering may follow a heuristic
scheme or may be based on the optimisation of a
certain performance index or the combination of
bath. It has been observed that the overall perfor-
mance of iterative algorithms such as ISODATA,
DvyNoc etc. depends greatly on the initial choice of
cluster centres (seed points). Different methods of
sclecting such seed points include extreme point
approach, graph-theoretic approach, thresholdings
etc. [1).

When the clusters to be detected are not compact
and well separated (i.e., boundaries are ill-defined
the fuzzy set theoretic representation has been
found to provide an usefull tool for cluster ana-
ly~is. In such cases, it is more natural to assign
euch object to a cluster with a degree of cluster
membership than it is done in classical set theory
where each point may either belong to a cluster or
nor [2,3).

The present work demonstrates an application
ol the theory of fuzzy sets in determining the initial

seed points in clustering. These were achieved
through the terms index of fuzziness, entropy, and
n-ness, which measure the amount of fuzziness
present in a set. In implementing these measures,
two membership functions have been defined in
R”.

The effectiveness of the algorithm is demon-
strated on a set of 87] speech data.

2. Fuzzy sets
2.1. Definition of a fuzzy set

Definition 2.1. A fuzzy set A with its finite number
ng of supporting elements x|, X, ..., X,, in the uni-
verse of discourse U is defined as

A={(ahx)}, i=12,...,n,

where the membership function ug(x;) having
positive values in the interval [0,1] denotes the
degree to which an event x; may be a member of
A. x; is said to be a cross-over point of A if
Halx;)=0.5.
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2.2. Membership functions

The standard S-function is defined (4] as

Sx;a,b,0)=0, x=<a, (1a)
x—a\?
-2(2=2).

c—-a

=1 _2(.\f—c)-‘ cz=xz=b, (1¢c)
c-a

bzx=a, (Ib)

=1, x=c. (1d)

The function n defined in terms of the §-
function is

n(x: bcy=S(x;c-b,c-b/2,0), x=<c, (2a)
=1-S(xice+b/2,c+b), x=c. (2b)

In S(v;ab.c), b is the cross-over point, i.e.,
S(b:a b.cy=0.5. In n(x; b,¢), b is the bandwidth,
i.e., the scparation between the two cross-over
points of the function n. ¢ is the central point at
which n=1.

The functions n and S represent the compati-
bility functions corresponding to the fuzzy sets ‘x
is large' and ‘x is ¢’, respectively.

Let us now define two membership functions for
xelR".

The first one is
S(x; b AY=4(1 = )x - bj/A) or

. (3a)
-4 == b)/A), fx—bf<A,
=0 or 1, otherwise, (3b)

where |- | denotes any norm in R”, 1 >0 is said (o
be the radius of S(x: b,A) and b is the cross-over
point. It is 10 be noted that equation (3) is a two-
valued function (values being complementary).

The second lunction may be defined in terms of
equation (3) as

A(x: ¢ A)
=min S(x; 3, A72), A/2<|x—cl<A, (4a)
=max S(x; »A72), O<|x-cl=41/2, (4b)

where |y —¢] = 1/2, and min S(x; y, 1/2) implies the
minimum of the two values of the $-function (cqua-
tion (3)) at the point x. Similarly, max S(x; y.A/2)
implics the maximum of the two values of the §-
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function at the point x. ¢ is the central point. ie.,
f(c: ¢, Ay = | and A is the bandwidth. This is shown
in Figure 1, where xeR®. By simplification, (4)
reduces to

Aa(x; ¢ A)
=401 =2 - yJ/A),
=1=4(1 = 2lx - yJ/A), O<l-cj<A/2, (b

A72<|x-cl=d, (Sa

with [y —c|=A/2.
Considering the Euclidcan norm,
Ix=yl=lx=cl-A72 ifA/2=:w-c)<i,
(6)
=A72-]x-cf (0. x-c¢i<sA/2
Using equation (6) we can further reduce equation
(5) 1o
#(xic,R)
=2l —[x—cl/A)?, AR2<x-cj<d, (T

bx—cf?

=1-2 = - O<jv—c:<i/2. (b

2.3. Fuzzy measures

2.3.1. Index of fuzziness
The index of fuzziness of A having ny suppon-
ing points is defined as [5)
2

”l;/k

y(A)= d(A, A) (8)
where d(A, A) denotcs the distance between 4 and
its nearest ordinary set A such that g, (x)=0u
#a(x¥)=<0.5 and 1 if g, (x,)>0.5. k=1 for lincar
distance and 2 tor Euclidean distance.

Figure 1. The function A in &,
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When d is linear, we have

ny

d(A,A)= -Z. AR EA

and, accordingly, the linear index of fuzziness
y,(A) can be written as

2
Y(AY= = T 1) = 1y (x:)] (9a)

nyg
2

==L Banalx) (9b)
ng
2 .

=L min(ua () 1= u(6)). (90
0

Eatension. Considering equation (3) for x;eR”,
we may write

2 )
y(A)=— L min u,(x,) (10)
Ny

where min g, (x,) implies the minimum of the two
w-values at the point x, of S (equation (3)).

2.3.2. Entropy
The entropy is defined for the set A as (6]
H(A)= noan Z Salus (),
i=1,2,...,nq, (11a)
where
Sp(x) ==p, ()N p4(x)
=(1 =, CNIn() = g,y (x)). (11b)

Extension. For x;€ R”, we may write considering
cquation (3),

1
H(A)= —— ¥ S,(ua(x) (12a)
nplin2 3

where
Sultta(x,)) = =(min g (x,Nn(min u, (x;))

~(max u4 (x;))In(max x4 (x;)). (12b)
N, (x,) and max g, (x,) imply the minimum
and maximum of the two u-values at the point x;

ol the function $ respectively.
Cquations (9) and (l1) measure the average
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amount of difficulty (ambiquity) that arises when
one has to take the decision whether x, would be
considered a member of A or not. These values lie
in the interval [0, 1] such that

y(A) or H(A)=0 (minimum)
when u,(x;)=0 or ) for all 4, (13a)

y(A) or H(A)=1 (maximum)

when u,(x,)=0.5 for all J, (13b)
Y(A)=y(A) and H(A)=H(A), (13c)
Y(A*)<y(A) or H(A*)s H(A), (13d)

where A* is a sharpencd version of A such that
Haelx)zp,(x) for p,(x)20.5 and py,.(v,)<
Hy(x,) for p,(x)=<0.5. It follows that y(A) or
H(A) increases monotonically in the interval
[0,0.5) and decreases monotonically in [0.5, 1] with
maximum value | a1 4=0.5.

2.3.3. m-ness (7]
The n-ness is defined for the set A as

mn

1
IA)=— ¥ n(x;; b.c) (14)
Npi=1

where n(x;: b,¢) is defined by equation (2).
For xeR"”, the n-ness is defined as

”m

I(A)=— ¥ d(x;al). (15)
Ng =1

2.4. Concept of fuzzy seis in extracting seed points

Let X={X,, X, ..., Xy} be the set of N patiern
points in the n-dimensional feature space (n=2).
We define the luzzy sel associated with the set X as

X(6.2)= (g XD X}, i=120 N (16)
where
l‘,\'u,_.u(Xi)=§(X,-:b./l) or A(X;; b, A).

b corresponds to the cross-over point for the func-
tion $ and the central point for the function 7. If we
keep A constant and change b we get different fuzzy
sets, i.e., changing b we can generate a class of fuz-
zy sets. From the expressions (3), (4), (10}, (12),
(15) and (13) we see that the contributions towards
Y(X(b,A)) or H(X(b,A)) or I(X(b,R)) are mostly
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from those points which are around » and it de-
creases as the points move away from b. In other
words, if the number of points around b is more
there will be a greater number of points X, having
#=0.5/=1 while using the function S$/function #
(resulting in y, H and /¢ 1) and a less number of
points having 4 =0 or 1/=0 while using the func-
tion $/function 7 (resulting in p, # and /=0) thus
increasing the value of y(X(b.4)) or H(X(b.A)) or
I{X (b, X)). Therefore the more points from fuzzy
set X(b, A) are compact around b, the greater
would be its y or H or / value and b can be con-
sidered as a secd point (centre of an initial cluster).

This suggests that modification of the cross-over
point/central point & will result in variation ol the
measures y(X(D, 2)). H(X(b. X)) and 1(X(), A)) and
so a sct of seed points {H} may be estimated for
which the corresponding fuzzy measures arc local-
ly maximum.

3. Algorithm for determining seed points using
fuzzy measures

Let X, . X>....Xx be the N pattern points
each of them having n properties, i.e., they are
samples from the n-dimensional featurc space.
Let /,, u, be the lower and upper bounds of the i-th
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property of the sample. Let us split the space
o)y x (B un)x - x(l,,u,) into L" grid pointy
where L is given by (11, - 1,)/d for a fixed rand d s
some preassigned positive constant called grid
width. Let b, i=1.2....,L", be the grid poinis.

Choosing A suitably, calculate the fuzy
measurcs using any of the cquations given below:

hY
YUX(B AN =— T min(uy, (X0, (1)
]

2
N,T
l Y
H(X(b,,A))= —— S, (X)),

(X(b,. X)) N|n2,X| (ﬂ,\(h,,/\) J .

l N
XD, A =— T A(X, b4, =121,
No= 1)

The grid points {b,} for which the corresponding
fuzzy measures are locally maximum may be taken
as initial seed points.

4. Implementation and resulls

The above-mentioned algorithm was implement-
ed on a set of 871 Indian Telugu vowel sounds in
a Consonant-Vowel — Consonant Context uttered
by three speakers in the age group of 30 to 35 years
[8). Figure 2 shows the feature spacc of six vowels

oo

%00

@8 760 400 WO 100 #0100 1a  14m 180 | W

08 e Ixu Moo 100 7® 1300 2400 130 260 L

Figure 2. Vowel classes in the (Fj-F3) plane.
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(d.a:,i,u,e,0) corresponding to F, and F,. F, and
F, denote the first and second vowel formant fre-
quencies which were obtained through spectrum
analysis of the speech data.

Table | shows the (F), Fy)-values for which the
fuzzy measures y, A and 7 were found to be locally
maximum when 4 and A were considered to be S0
and 100 respectively. A set of § to 7 maxima is
observed for different measures. The seed points
as given by these (F), F;)-values are found to agree
well with those of the classes in Figure 2.

In order to demonstrate the effect of the para-
meters d and 4 on the selection of seed points, we
have considered only the measure ‘entropy’, and
Tables 2 and 3 illustrate such an effect when d and
) were chosen to be 25, 50 and 100, and 100, {50
and 200 respectively.

At low values, viz. d =25, A = 100 (Table 2a), the
number of seed points is found to be 9 and as we
increase A some of the weak local maxima get lost
leaving behind only the strong ones. A similar effect
is also found from Tables 2(a), 1(b) and 3 to occur
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Table 3
Seed point and the corresponding H-values for =100 and
A=100

Seed point (F\. F) Hx 102
(350, 2123) 2.430
(450, 985) 5.7197
(550, 1838) 1.697
(750, 1269) 2.960

when one increases the grid width for a fixed value
of 4.

S. Conclusions

A method has been outlined using the concept of
fuzzy sets whereby a satisfactory choice of initial
seed points for clustering a given data set may be
determined.

Table |

seed poinis and corresponding fuzzy measures when d=50 and 2 =100, (a) y;. (b} H. (c) /

(a) (b) ©)

sced point (F,. Fy) yx107? Secd point (F,F;) Hx10"? Seed point (£, Fy) Ix10°?
1350,2265) 2.152 (350,2265) 4.172 (350.2265) 3.709
(400, 985) 3.316 (450, 985) 5.797 (500, 985) 5.464
(500, 98S) 3.750 (500, 1981) 2.022 (500, 1981) 1.885
(500,1981) 1.237 (550, 1554) 1.478 (550,1554) 1.267
(600, 1411) 0.079 (750.1269) 2.960 (600, 1838) 1.512
600, 1838) 0.091 (750, 1269) 2.742
(750.1269) 1.651

Table 2

Seed points and corresponding H-values for d=25, (a) A =100, (b) A =150, (c) A =200

(a) (b) (c)

Seed point (F\. Fp) Hx10"2 Seed point (F). Fy) Hx10"2 Seed point (F,. Fy) Hx10"2
(300, 1483) 0.106 {350, 2265) 7.301 {350,22695) 10.200
(350,2265) 4.172 (425, 985) 10.898 {425, 985) 16.167
(475, 985) 5.997 (525,1838) 3.800 (500.1910) 6.258
1500, 1838) 1.795 (550, 1554) 2.619 (675, 1269) 8.016
(500, 1981) 2.022 (700, 1269) 5.384
(325, 1554) 1.498
{600, 1818) 1.685
(650, 1198) 2.794
(725, 1269) 3.158
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