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HERMITIAN AND NONNEGATIVE DEFINITE SOLUTIONS OF
LINEAR MATRIX EQUATIONS*
C. G. KHATRI anD SUJIT KUMAR MITRAt

Abstract. Necessary fici tions for exit d expressions for general He
and nonnegative definite solutions are obtained for the following three systems of linear cquations:
(DAX=C, (1) AX=C XB=D,(lll) AXB=C.

1. Introdnction. Algebraic solutions of linear matrix equations using
generalized inverses of matrices have a history dating back to Bjerhammer [3].
Some other contributors in this area are Penrose (8], (9], Rao [10], Morris and
Odell [7], Rao and Mitra[12] and Mitra [6]. For some applications, however, the
only solutions that are relevant may be those where the solution matrix is
Hermitian or nonnegative definite. The MINQUE estimate of covariance compo-
nents in a covariance components model given by Rao [11], for example, requires
the solution of a matrix equation, linear in Z (the covariance matrix of the model),
where it is obviously desirable to restrict the solution Z to be nonnegative definite.
Similar problems also occur in load slow analysis and short circuit studies in power
systems (see, e.g., Stagg and El-Abiad [13]).

Keeping such applications in view, the authors in the present paper study the
following three systems of linear equations: () AX=C, (1) AX=C, XB=D
and (111) AXB = C, obtain necessary and sufficient conditions for the existence of
a Hermitian or nonnegative definite solution, and also the general class of such
solutions, for each case separately. This paper thus partially fills a gap between the
well-known results on generalized inverse solutions of linear matrix equations
(see references cited earlier and also the recent survey in Ben-Israel and Greville
[2)) and the rich literature on positive definite solutions of linear matrix equations
(such as Lyapunov type stability theorems, see, e.g., Hill [4], Ben-Israel and
Berman [1]).

We consider matrices over the complex field. €™*" represents the linear
space of all complex matrices of order m X n. Matrices are denoted by capital
letters such as A, B, X etc. For a matrix A, #(A) denotes its column span, A * its
complex conjugate transpose, a generalized inverse of A denoted by A™ is a
matrix which satisfies the equation AA"A = A (Rao and Mitra [12]).

2. The main results.

THEOREM 2.1. Let A and C be given matricesin ™" such that the equation
(2.1 AX=C
is consistent. The equation (2.1) has a Hermitian solution if and only if

2.2) CA* s Hermitian,
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in which case a general Hermitian solution is
(23) A C+CHA)-ATACHA)*+(I-A"A)UUI-AA),

where A is an arbitrary g-inverse of A and U an arbitrary Hermitian matrix in
ey

Proof. Let X be an Hermitian solution of (2.1). Then CA* = AXA* is clearly
Hermitian. This shows the necessity of (2.2). For sufficiency, check that when
CA* is Hermitian so are AC* and X,=A"C+C*A")*-A"AC*A")* and
that X satisfies (2.1).

A general Hermitian solution is obtained by adding to X, a general Hermi-
tian solution of the homogeneous equation AX =0. Solution (2.3) therefore
follows from Corollary 1 to Lemma 2.3.1 in Rao and Mitra [12, p. 26].

THEOREM 2.2. The equation (2.1) has a ive definite solution if and

only if
(2.4) CA* isnonnegativedefinite,  rank CA*=rank C,

8

in which case a general nonnegative definite solution is
(2.5) CHCAY C+(I-A"A)UI-AA),

where (CA*)” and A~ are arbitrary g-inverses of CA* and A respectively and U is
an arbitrary nonnegative definite matrix in €"™".

Proof. Let X be a nonnegative definite solution of (2.1). Then CA*= AXA*
is clearly nonnegative definite and rank CA* = rank AXA* =rank AX =rank C.
This shows the necessity of (2.4). For sufficiency, check that when (2.4) is true,
M(C)=M(CA*). Hence by Lemma 2.2.4 (iii) of Rao and Mitra [12, p. 21],
C*(CA*)"C is invariant under the choice of a g-inverse of CA*. Since a
nonnegative definite matrix such as CA * has a nonnegative definite g-inverse, itis
seen that Xo= C*(CA*)"C is nonnegative definite. Also,

AXy=AC*(CA*) C=CA¥(CA¥ C=C.
Sufficiency of (2.4) is thus established.
Since Xjsatisfies (2.1) and rank X =rank C, by Note 1 following Lemma 2.2

in Mitra [5], it is seen that Xo= GC = GAX, for some g-inverse G of A. Asin
Theorem 2.1, a general Hermitian solution to (2.1) is given by

X=XtV,

where V=(I- GA)U(I- GA)* and U is Hermitian. If U is nonnegative definite,
then so are V and X. Also since

(I-GA)X(I-GA)*=(I-GA)Xo(I- GA)*+(I- GA)V(I- GA)*
=(I-GA)V(I-GA)*=V,

if X is nonnegative definite, so is V. This shows that each nonnegative definite
solution X of (2.1) can be expressed as

(2.6) X=X,+(I-GA)U(I-GA)*

for a proper choice of the nonnegative definite matrix U. Let A™ be an arbitrary
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g-inverse of A. Since (I-A A)I-GA)=(I-GA), substitution of
(I-A"A)(I-GA) for (I-GA) in (2.6) shows that (2.5) indeed provides a
general nonnegative definite solution to (2.1).

THEOREM 2.3. Let A and C be given matrices in €™" and B, D be given
matrices in €"™® such that the equations

(2.7) AX=C, XB=D
are jointly consistent.
(a) These equations have a common Hermitian solution if and only if
CA* (B )
28 M—(D*A* D*B

is Hermitian, in which case a general Hermitian solution is

(5 (oo} () T~(5e) (o) T
1= Gl el=() (o))

where U is an arbitrary Hermitian matrix in 4",
(b) These equations have a common nonnegative definite solution if and only if

29) M isnonnegativedefinite and rank M =rank (C* ; D),

in which case a general nonnegative definite solution is

@10) (C*: D)M‘(ga) + [’ '(;*)-(;*)] U[' _(;*)_(;*)]*

where U is an arbitrary nonnegative definite matrix in ™"
Proof. Observe that for AX=C, XB=D to have a common Hermitian
(nonnegative definite) solution it is necessary and sufficient that the equation

(3%~

has a Hermitian (nonnegative definite) solution. Theorem 2.3 therefore follows
from Theorems 2.1 and 2.2.

In the next two theorems we look for Hermitian and nonnegative definite
solutions of the consistent matrix equation AXB = C. As in Mitra [6], we assume
here that the coefficient matrices A and B are both nonnegative definite. This
involves no loss of generality since whenever the equation AXB = C'is consistent,

AXB=C&A*AXBB* = A*CB*.

THEOREM 2.4. Let A and B be given nonnegative definite matrices in ™" and
Cbe a given matrix in 6" such that the equation

(2.11) AXB=C
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is consistent. (2.11) has a Hermitian solution if and only if
(2.12) T=B(A+B) C(A+B) A
is Hermitian, in which case a general Hermitian solution is

X=(A+B) (C+C*+Y+Z)(A+B) *+U
(2.13) —(A+B) (A+B)U(A+B)[(A+B)T*,

where (A +B)” is a g-inverse of (A+B), U is an arbitrary Hermitian matrix in
%"" and Y, Z are arbitrary Hermitian solutions of the equations

Y(A+B)" B=C(A+B) A,

A(A+B) Z=B(A+B) C

obtained as in Theorem 2.1.

Proof. We first show that for the equation AXB = C to have a Hermitian
solution, it is necessary and sufficient that the equations AXB = Cand BXA = C*
have a common solution. If the Hermitian matrix X satisfies AXB=C, the
equations AXB = C and BXA = C* clearly have a common solution, in fact, a
common Hermitian solution. Conversely, if X satisfies both AXB=C and
BXA=C* (X+X*)/2 is a Hermitian solution of AXB=C. Theorem 2.4
therefore follows from Theorem 2.1 of Mitra [6]. We leave it to the reader to
verify the necessary details. It is a routine matter as in Mitra [6] to check that X as
defined in (2.13) is a Hermitian solutiqn of (2.11). Conversely, let X be a
Hermitian solution of (2.11). Put Y=AXA, ? =BXB and check that Y and Z
are Hermitian solutions of (2.14). Also X = X satisfies the equation

(A+B)X(A+B)=C+C*+Y+Z

of which Xo=(A+B) (C+C*+Y+Z)[(A+B)]* is another Hermitian solu-
tion.

This shows that X can always be represented as Xo+ W, where W is a
Hermitian solution of the homogeneous equation (A +B)X(A+B)=0. An
application of Corollary 1 to Lemma 2.3.1 in Rao and Mitra [12, p. 36]
establishes the expression (2.13) for X.

THEOREM 2.5. (2.11) has a nonnegative definite solution i and only if T as
defined in (2.12) is nonnegative definite and

(2.14)

(2.15) rank T=rank {A(A +B)"C*}=rank {B(A +B)"C},
in which case a general nonnegative definite solution is given by

X=(A+B)(C+C*+Y+Z)(A+B)]*
(2.16) +[I-(A+B) (A+B)JUI-(A+B) (A+B)},

where Y and Z are arbitrary nonnegative definite solutions of (2.14) such that
C+C*+Y+Z is nonnegative definite, (A+B)" is an arbitrary g-inverse of
(A +B) and U is an arbitrary nonnegative definite matrix in 6"*".

Proof. For the necessity part observe that when (2.11) is consistent,

T=B(A+B)"AXB(A+B) A.
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Further, for nonnegative definite matrices A and B, B(A +B)"A is Hermitian
and, in fact, nonnegative definite (see Rao and Mitra [12, p. 191]). Hence when X
is nonnegative definite so is T and

rank T=rank B(A +B)"AXB
=rank B(A+B)"C
=rank AXB(A+B) A
= rank‘C(A +B)"A.

We now proceed to prove the sufficiency part and along with it the rest of the
theorem. We first show that when these conditions are true, nonnegative definite
solutions Y, Z to (2.14) can be so determined that

C+C*+Y+Z

is nonnegative definite. To simplify writing, let us rewrite (2.14) as YE=F,
KZ =L, where E, F, K and L have obvious interpretations. Check that LK*=
T=E*F. Also(2.15) implies rank T =rank F =rank L. Hence if Tis nonnegative
definite, by Theorem 2.2 general nonnegative definite solutions to (2.14) can be
written as

Y=FT F*+(I-EE")*V(I-EE"),
Z=L*T"L+(I-K"K)W(I-KK)*.
Hence
C+C*+Y+Z=(F+L*T (F*+L)+[(I-EE"}*V(I-EE")
+(I-K"K)W(I-K K)*+C-FT L+C*-L*TF*].
Observe that E¥(C—FT L)=L—TT L =0 since #(L)=(T) in view of the
rank conditions (2.15). Similarly,
(C-FT'L)K*=F-FT T=0.
Hence
C+C*+Y+Z=(F+L"T (F*+L)
- - v C-FT'L\[ I-EE”
BB UK KN gy gy ) u- K‘K)*]’
which is nonnegative definite if V and W are so chosen that
( 14 c- FT'L)
C*=L*T"F* w
isalso. One such choice is V=1, W=(C*-L*T F*)(C~-FT L), leading to the
following expressions for Y and Z:
Y=FT"F*+(I-EE")¥(I-EE"),
Z=L*TL+(C*-L*T"F*(C-FT'L).
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With such a choice of Y and Z it is seen that X as in (2.16) satisfies (2.11) and is
nonnegative definite.

Let X bea nonnegative definite solution of (2.11). Put Y= AXA Z=BXB
and observe that Y, Z are nonnegative definite solutions of (2.14) such that

N=C+C*+Y+Z=(A+B)X(A+B)

is also nonnegative definite. That X can always be expressed as in (2.16) follows
from Lemma 2.1.

LemMA 2.1. Let A be a given matrix in €™" and C a given nonnegative
definite matrix in €™™ such that the equation

(2.17) AXA*=C
is consistent. A general nonnegative definite solution to this equation is given by
(2.18) X=ATCA+(I-ATA)UI-A"A),

where A” is an arbitrary g-inverse of A and U is an arbitrary nonnegative definite
matrix in €"™".

Proof. X as defined in (2.18) is clearly a nonnegative definite solution to
(2.17). To show that (2.18) is the expression for a general nonnegative definite
solution, we consider an arbitrary such solution X and write X = (Y)(")*. Clearly
(A Y)(AY)* C and therefore rank AY =rank C=r (say). Let us now write
AY =D and consider its partitioned form D = (D, ; D,), where D, is the matrix
formed by the first r columns of D. We may now assume, without any loss of
generality, that D, =0, because if it is not so, one can always realize this objective
through a unitary transformation applied to the columns of Y. If the matrix ¥ is
partitioned as (Y; : Y>) in a corresponding manner, it then follows that

AY,=D,, D,D¥=DD*=C,
A}";:

Since rank f’. =rank D, =r, it follows from Note 1 followmg Lemma 2.2 in Mitra
[5] that ¥, = A™D, for some g-inverse A~ of A and ¥,=(I-A~A)V for some
V. Hence

X=11 Y, VE=A"CA)*+(I-A"A)U(I-A"A)*,

where U= VV* is a nonnegative definite matrix. This concludes the proof of
Lemma 2.1 and also of Theorem 2.5.
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