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SUMMARY. For Bayesian three-decision ASR plans by attributes uniqueness of optimal 

solution has been established by using a two-point prior distribution for incoming lot quality and 

assuming that the expected decision loss is a monotonically decreasing function of acceptance 

decision number with falling rate of decrease and the point of intersection of regret functions is 

an increasing function of acceptance decision number, Both of these assumptions are posed as 

open conjectures. It is pointed out that numerical results support the truth of both the 

conjectures. 

1. Intboduction 

A wide variety of Bayesian three-decision plans were developed in Pandey 

(1984). The numerical computations of the optimal plans yielded unique 
solution in each of these cases. These unique Bayesian plans are tabulated 

in the above work for the cases : (i) two-point prior restricted and unrestricted 

Bayes solution (ii) three-point prior unrestricted Bayes solution and (Hi) beta 

prior unrestricted Bayes solution. An attempt is made to establish, analyti 

cally, the uniqueness of the optimal solution. 

In this paper we consider the case of two-point prior restricted Bayes 

solution for three-decision ASR (accept-screen-reject) plan to show the uni 

queness of the optimal solution. A complete rigorous proof for uniqueness 
is provided under two assumptions?(1) expected decision loss is monotoni 

cally decreasing function of acceptance decision number with falling rate of 

decrease and (2) point of intersection of regret functions is increasing function 

of acceptance decision number. Although, both the assumptions have been 

found to be true in practice on the basis of numerical results, it has not been 

possible to establish their truth analytically. In view of this they are posed 

as open conjectures. 

To facilitate discussion on the uniqueness, necessary background theoreti 

cal details are also given in Sections 2 and 3. The uniqueness of Bayesian 

solution for other three-decision plans are attempted on similar lines and are 

omitted. 

AM S (1980) subject classification : 62N10. 

Key words and phrases : Bayesian three-decision restricted plan, expected decision loss, 

uniqueness of Bayes solution, acceptance decision number. 



BAYESIAN THREE-DECISION PLANS 417 

2. Three-decision restricted Bayesian ASR plan 

Assume that the incoming lot quality p follows a prior distribution with 

density w(p). For the triplet (n, cv c2) defining a three-decision plan the three 

decision corresponds to the values of the decision variable x as follows : 

Decision Value of x 

0 < x < cx 

C-\ "^ X ^^. Go 

Co < x < n 

(2.1) 

If the three terminal decisions 1, 2 and 3 are acceptance, screening or rejection 
of the lot respectively, we call the plan as three-decision ASR plan. 

Let ka(p), kt(p) and kr(p) be the cost associated with the decision 1, 2 

and 3 respectively and ks(p) be the cost of inspection when p is the incoming 
lot quality. It is assumed that for lots free from defectives the costs ka(p), 

h(p) and kr(p) are in increasing order whereas for lots with 100% defectives 

they are in decreasing order. Also, the cost of inspection is assumed to be 

more than the minimum unavoidable decision cost km(p). We shall write 

h = J k (p) dW(p). (2.2) 

Assuming the simplest form of the prior distribution W(p) for p as two 

point prior with values p' and p" with relative frequencies wx and w2 respecti 

vely w1-\-w2 
= 1, the regret or loss function corresponding to the three-decision 

is given by 

0< N <n CN, 
R(N, n, cv c2) 

= 
<[ 

\^n+(N?n) G(n, cv c2), n < N 
(2.3) 

where G(n, cl9 c2) denotes the expected decision loss and is a complicated 
function given by (2.4). 

G(n, cl9 c2) 
= 

An [1?B(cx ; n(cx), p')] 

+ ^12-B(cl >n(Ci)>P") 

+A21[l-B(ca(c1);w(c1),jp')] 

+A2,B(c2(c1);n(c1)9pff) ... (2.4) 
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where ?y, i, j 
= 1, 2 are constants defined in Pandey (1984) as follows : 

Au 
= 

wx[kt(p')-ka(p')]l(ks-km) 

A12 
= 

w2[ka(p")-kt(p")]l(ks-km) 

A21 
= 

wx [kr(p')-kt(p')]l(ks-km) ... (2.5) 

A22 = w2 [W)~ W)]/(*?-*m) 
Pu 2>v 1 

km = J Up)dW(p)+ J A*(p)?lF(p)+ J kr(p)dW(p) ... (2.6) 
0 Pw Pv 

It is desired that the Bayesian three-decision plan should satisfy certain 

restrictions on the probability of misclassification. Let px and p2, px < p2 

denote the levels of incoming lot quality such that a lot of quality px(p2) if 

correctly classified should be screened (rejected). Let ?x(?2) be the probabili 
ties of misclassification of a lot of quality px(p2) resulting in acceptance (accep 
tance or screening) of the lot under the plan (n, cv c2) i.e. 

B(cx;n,px) 
= 

?x ... (2.7) 

and B(c2 ; n,p2) 
= 

?2 ... (2.8) 

where 0 < ?x, ?2 < 1 and (2.7) and (2.8) are satisfied as closely as possible 

treating n, cx and c2 as integers. 

Let S denotes the set of plans satisfying (2.7) and (2.8) for given values 

of px, p2, ?x and ?2. For a plan in S if any one of the triplet (n, cx, c2) is fixed 

the remaining two parameters can be uniquely obtained. In view of this, a 

plan in S can be indexed according to acceptance decision number cx alone and 

denoted as S(cx) and the corresponding regret for lot of N as R(N, cx). Thus, 

S = 
{(n, cx, c2) : B(cx ; n, px) 

= 
?x, B(c2 ; n, p2) 

= 
?2). 
... (2.9) 

A restricted Bayesian three-decision (RBT) plan (n?, c\, c\) can be defined as 

S(c\) 
= 

{S(cx) : B(N, c?x) = inf. R(N, cx)} ... (2.10) 
S(cx )eS 

3. Determination op RBT plan 

For a fixed N, the value of cx minimising R(N, cx) is determined from the 

inequality 

AR(N, cx-l) < 0 < AR (N, cx) ... (3.1) 

To obtain the bounds for the lot size for which the plan (n, cx, c2) satisfying 

(3.1) is the optimal plan we shall define 
Nc from AR(N, cx) as follows : 

Ncx 
= 

^(ci)+[m"/fii-^2i+/*n^i+l ; n(cx+l),pf) 

-fiX2B(cx+l ;n(cx+l),p'')+fi2XB(c2(cx+l)',n(cx+l),p') 

~B(c2(cx+l) ; n(cx+l),p")] A n(cx)??(cx) ... (3.2) 
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where m = 
1/A22, /% 

= 
mA^/Ay > 0, i, j 

= 1, 2 and 

tffci) = Ifhi A jB(cx ; n(cx), p')-fi12 A ?fo ; n(cx), p") 
+fi21 A 5(c2(Ci) ; n(cL), p')-f?22 A ^(q) ; n(cx),p")]. 

... (3.3) 

Clearly, 

&R(N9c1)=U(c1)(NCi-N)lm 
and A i_(iV, ct-l) 

= 
?7(^-1) (Ne ̂ -N)/ , m > 0. 

The function ?[/(c^ is related to G^) = G(n, cv c2) defined by (2.4) and is used 

subsequently as UfcJ/m 
= ?A G(c?). 

Although, it has not been possible to study the monotonocity of G(cL) 

analytically, extensive computations show that it is a monotonically decreasing 
function of c? with falling rate of decrease i.e., A G(cx) < 0 and A2 G(cx) > 0 

as in Pig. 1 and, hence, that U(c?) > 0 for all values of cv Further, 

numerical results show that G(c^ < 1 for all the values of cv 

Therefore, it follows from (3.1) that the plan (n, cv c2) is optimal for the 

lot size N if 
N 

Cl-i N<Nr (3.4) 

For fixed cx and Ay's note that R(N9 cx) as defined in (2.3) is always an 

increasing linear function of N. 

cT 360 

16 18 

Fig. 1. Expected decision loss (standardised) as a function of c_ for Bayesian plan with double 

binomial as a prior distribution pf 
= 0.01, p" = 0.15 and wx 

= 0.93, w2 
= 

1?wx 

and Q(cx) in the units of 10~* where px = 0.05, p2 ? 0.10, ft 
? 

0.07, ft 
= 0.10. 
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Consider two plans?plan 1 : (nx, c'x, c2) and plan 2 : (n2, cj, c?) and let 

(Nx, N\) be the range of values of N where plan 1 is optimal and (N2, N2) 
be the range of values where plan 2 is optimal, according to (3.4). 

For plan 1, R(N) increases when N rises from Nx to N[ and for plan 2 it 

increases when N increases from N2 to N2. Let Nx < N2 < N[ < N'2 ; then 

(N2, N[) is the range of overlap in N. We shall now examine the question as 

to which of the two plans?plan 1 or plan %?should be preferred in (N2, N[). 

Since Nx < N2 < N[ < N2 and it is given that 

f R(N, nx, c?, c2) for N eMx 
min {R(N, nx, c[, c2), R(N, n2, c?, cl)} 

= 1 

[R(N, n2, c\, c2) for N e M2 

where Mx = 
{N ; Nx < N < N[} and Jf2 = 

{iV ; iV2 < iV < ^} and further 

R(N) is increasing linear function of N, the R(N) function for plan 1 and 

plan 2 must intersect at some point in (N2, N'x), the range of overlap (Figure 

2). At the point of intersection in (N2, N'x) the values of R(N) for the two 

plans must be equal i.e., 

R(N, nx, cx, c2) 
= 

R(N, n2, c[, c2) 
... (3.5) 

which gives the expression for N(l,2) the point of intersection. For example, 

N(cx, cx-\-l) the point of intersection of R(N, cx) and R(N, cx+l) is given by 

N(cvc1+l) = ^1+l)[l-?(c1+l)]-^)[l-?(c1)1 {36) ?A (t(cx) 

Thus 

R(N, nx, cx, c2) % R(N, n2, cx, c2) according as N % NX2 ... (3.7) 

and hence in (N2, NX2) we should prefer plan 1 to plan 2 and in (JV12, Nx) we 

should prefer plan 2 to plan 1 where iV12 
= 

N(cx, cx+l). 

For any cx the plan S(cx) e Sis optimal for lot range Nc^x < N < 
Nc^ 

as stated by (3.4). The function R(N, c?) is a concave function of N according 

to (2.3). 

Writing 

NCl 
= n(Cl)+ 

^fg?j 
Awfa) - <3-8) 

we note that Nc > n(cx). Nc 
is an increasing function of n(cx). Hence, as 

stated earlier, for increasing values of cx of various optimal plans in S, the 

corresponding lot size ranges would be moving to the right, possibly over 

lapping according to (3.7). 
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The optimal plans can be systematically tabulated, as indicated in 

Pandey (1984), as follows : 

Step 1 : Take some arbitrary values of cx and obtain a plan, say S(cx) e S 

by using the fact that (2.7) and (2.8) are satisfied as closely as possible. 

Step 2 : For the plan S(cx) so obtained, compute the value of Nc 
and 

Nei_t using (3.2). 

Step 3 : Choose cx = 0, 1, 2, 3, ... 
systematically and proceed as in 

steps 1?'2 and tabulate the sampling plans and the corresponding bound 

for the lot sizes. 

Step 4 : For two plans with overlapping _V-intervals use (3.7) to select 

the optimal plan. 

Steps 1-4 have yielded unique plans which are available in Pandey 

(1984). We shall devote the subsequent section to analytical uniqueness 

of the optimal plans. 

4. Uniqueness of bestricted bayesian asr plan 

The uniqueness of optimal Bayes solution discussed in the previous sec 

tions, can be proved analytically provided? 

(a) the function G(c)9 denoting c? as c for simplicity of notation, as defined 

in (2.4) is analytically shown as a decreasing function of c with falling rate of 

decrease i.e., Ac G(c) < 0 and A^ G(c) > 0 and 

(b) the point of intersection N(c, c+1) of R(N9 c) and R(N9 c+1) as defined 

in (3.6) is analytically shown as an increasing function of c i.e., Ac N(c9 c+1) 

>0. 

It has not been possible to prove (a) and (b) analytically and it is noted 

from Hald (1960) that it has not been possible to prove (b) analytically 

even in the case of two-decision plans. 

We pose (a) and (b) as "open conjectures". However, as mentioned 

earlier we have carried out extensive numerical computations and found that 

both the conjectures (a) and (b) are true for the range of values of c taken. 

Our numerical results in respect of (a) and (b) are illustrated in Figures 1 

2 respectively. 

In the light of the above numerical investigations if we accept (a) and (b) 

as true, then, the proof for uniqueness proceeds rigorously as follows : 
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Lemma 1. Let R(N9 c) = n(c) (l~G(c))+G(c)N. For any 0 < c' < c" < n 

there exists a unique N0 > 0 such that R(N0, c') 
= 

R(N0, c"). Further, we 

have R(N, c") > R(N9 c') for all 0 < N < N0 and R(N9 c") < R(N9 c') for 

N>NQ. 

Proof : It can be easily shown that the functions fL(x) 
= 

aL+bxx and 

f2(x) 
= 

a2-\-b2x9 x e R2 for bx > b2 > 0, 0 < ax < a2 intersect at x0 > 0 and 

fx(x) meets f2(x) from below. 

Now, for plans in S we have n(c-\-k)>n(c) for any k = 1, 2,.... We take 

rc(c") > n(c') and note that n(c") (l-G(c")) > n(c') (l-G(c')) and G(c") < G(c'). 
The required results follow by putting ax 

= 
n(c') (l?G(cf))9 a2 

= 
n(c") 

(l-(?(c")), 6i 
== 

G(c') and b2 
= 

?(c"). 

Theorem 1 : ?ci c0 > 1 and let N0 be such that R(N0, c0) 
= 

R(NQ9 c0+l). 
Then c = 

c0+l is the unique value which satisfies the condition AR(NQ9 c0) 

<0<Ai_(_V0,c0+l). 

Proof : By hypothesis we have A R(N09 c0) 
= 0. We have by Lemma 1, 

A R(N9 c0+l) > 0 for all 0 < N < N(c0+l9 c0+2). Since N0 
= 

N(c09 c0+l) 

< N(c0+l9 c0+2), we have A R(NQ9 c0+l) > 0. Consider any c>c0+l. 
For all N < N(c9 c+1) we have A R(N, c) > 0. Since N0 < N(c, c+1) we 

have A R(N0, c) > 0 for all c > c0+l. Now, consider any 0 ^ c < c0. By 
Lemma 1, A R(N9 c) < 0 for all N > N(c9 c+1). 

Since N0 
= 

N(c0, c0+l) > N(c, c+1) we have A R(NQ9 c) < 0. 

Theorem 2 : For any N > 0 there exists an unique c0 such that A R(N9 c0) 

<0<A?(_V,c0+l). 

Proof : For simplicity of notation let Nk=N(k9 k+l). If Njc^N< Nk+l9 
let c0 

= k. We have from the proof of the Theorem 1 for Njc = M9 

AR(M9 k) = 0 and A R(N, c) < 0 for all c<k and _? > _VC. But 

N ^ Njc> Nc and hence A R(N9 c) < 0. Similarly, we can show that AR(N, c) 

> 0 for all c > k. 

This completes the proof that the solution is unique. 

5. Concluding remarks 

For different prior distributions and different terminal decisions the point 
of intersection of the regret functions and the expected decision loss have 

similar expressions but varying degree of complexity. Approach presented 

here remains basically same for other cases with some minor modifications in 

B3-20 
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the proof. However, the conjectures, still form the main foundation in all 

the cases. In case of a continuous prior distribution uniqueness of Bayesian 

three-decision plans is implied analytically under certain regularity conditions 

as it can be seen in Pandey (1987). It is felt that it may be relatively easier 

to show uniqueness of solution analytically in case of Bayesian three-decision 

plans by variables. 
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