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Estimation of the Drift for Diffusion Process!
B. L. S. Praxasa Rao

Indian 8tatistical Institute, New Delhi

Summary. A brief survey of recent results in the area of parametric and nonparsinetric
estimation of the drift coefficient of a diffusion process are presented. Some open problems
are stated.

1. Introduction

Let {X,, =0} be & stochastic process defined on a probability space (2, J, P) and
satisfying the ITo stochaatic differential equation
dX,=a(X,)dt +0(X,)dW,, t=0 X,=X (1.1)
where {W,, =0} is the standard WreNER process defined on (2, J, P} and X, in-
dependent of {I¥V,, t=0}. Suppose the following conditions hold:
(1) EX?<w, and
(2) a(z) and o(z) are real valued BoreL-measurable functions satisfying the
LrescarTz conditions
la(z) —a(y)| =K |z -y
lo(z) —o(y)| =K |z -y

and the linear growth conditions
1

la(z)| =K (1 +22)2,
1

lo(z)| S K (1 + z2)¢

where K=>0.
It is known that the equation (1.1) has a unique solution with probability one and
it is & strong MaRROV process under the conditions (1) and (2). {See GIkmMAN and
SkorokoD (1972), Wone (1971)). Such a solution is called a Diffusion process. Let
P, x,~a denote the transition density of X, given X,=a. Under some additional
conditions, this transition density converges to a limiting density p(") as ¢ —eo.
Suppose the initial density of X=X is p(). Then the process {X,} is a stationary

! Paper presentod at the 6" International Summer School on Probloms of Model Choice
and Parameter Estimation in Regression Analysis, November 1883, Sellin, GDR.
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MAaREOV process. It is agein known that (a(-), o(-)) are connected to p(-) by
1 )
(s "”’) =ap. (1)

where 1 denotes the derivative of f (See Wona (1971)).

In the following discussion, we shall assume that either o{.) is known or it is an
unknown constant. It is known that the sample paths of the process X satisfying
(1.1) are continuous with probability one. Let u} be the measure induced on
C (0, T'] by the process X observed on [0, T]. C[0, T'] is the space of continuous
functions on [0, T'] endowed with the sup norm topology. Let u% be the measure
induced on C[0, T'] by the standard WIENER process on [0, T]. If

T
a(X,)]?
P [of [U(X‘)] dt<ml =1
then py<puly and

T T
duf a(Xy) ( a(X) 12 ”
log dafy _[f o(X,) dx‘_i uf [U(Xl)] dt:l e [uy]. (1.3)

0

Using this explicit expression for theRApox-Nrkopys derivative, one can study
inference problema concerning either estimation or testing of the drift coefficient
of & diffusion process. We shall now describe some recent work in this area by this
author and others. This survey is not exhaustive.

2. Parametric Inference

Let us consider the stochastic differential equation (1.1} in the form viz.,

dX,=a (8, X)) dt +o(X,)dW, t=0, X,=X (2.1)
where a(.,.) and o(.) are known functions and 8¢ @cR is unknown. Maximum
likelihood estimation (MLE) of 0 given that the process .\, is observed over [0, T)
continuously has been discussed by several authors both when a(., x) is linear as
well as when a(., x) is non-linear in 0. An extensive survey of this discussion in the
linear case is given in BAsAwA and PRAKASA Rao (19804, b). We do not go into the
details here. For related work in the nonlinear case, see KuTovaNts (1984),
IBrAGIMOV and HasMiNskll (1981), PRAKASA Rao and RuBix (1981) and Basy
(1983). The probabilistic techniques used to study asymptotic theory in both
Prarasa Rao and Rusin (1981) and BAsu (1983b), are of independent interest.
For simplicity, we shall assume that o(.)=1 and suppose that

P {fT fa(8, X))2dt <ea} =1 (2.2)

for all T'=0. Then, it is known that uf<ul, where 1T denotes the measure in-
duced on C[0, T'] by the process X when the process X is observed over [0, T) and
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¥ is a8 defined earlier. Further more

awl  F d
log L() =log 51~ [ a6, X)X, ~ [ (a0, X2 dt. (23)
0 )

Maximum Probabllity Estimation (MPE)

Let
-4
a+7 2
Zp(0)= [ Ly(t)yar. (2.4)
1
o-T T
Any measurable function 6, for which the integrated likelihood Zn(0) is max-
imized with respect to 8 is called a i probability estimator (MPE) of 6

based on the sample path of the process X on [0, T].

Existence and asymptotic properties of this estimator were atudied in PRAKASA
Rao (1982).

Suppose the solution {X,} of (1.1) is stationary and ergodic. Further suppose
that a(.,.) is differentiable with respect to 6 with derivative a")(., z) and 0<
<aX0)=E, [a*"(8, X,)]2<=. Under some further regularity conditions, it was

1

shown that there exists a MPE 6 of 6 which is YT-consistent i.e., T?(G,. -0)=
=0,(1) and

1
- 1
TZ(-0) <N (o. W) 88 T—oco. (2.5)

Further more, this estimator is asymptotically efficient in the sense of Wxy1ss and
WoLrowITz (1974). For details, see PRAKASA Rao (1982).

Least Squares Estimation (LSE)

A basic assumption, in the study of either maximum likelihood estimation or
maximum probability estimation of parameters of diffusion processes, is that the
process can be observed continuously in time. It is obvious that this assumption is
too strong and impossible to meet in actual practice. For convenience, write X(t)
for X,. T

Suppose the process X is observed at the points ¢, =% = for k=0,1, ..., n where

Z‘—-O and T ~e. Lot

n-t T
0= [X(zm) — X{ty) ~a(8, X(t,)) ;]2 (2.6)

and B.,,',. be defined to be a measurable function from 2 —© such that
Qn(én,T) =§£1g Qn(6) (2.7)
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where @ is the parameter space. Clearly a measurable solution 5,.., exists if a(0, x)
is continuous in ¢ and @ is compact. DoRoGOVORY (1976) hes given sufficient con-
ditions for weak consistency of the eatimator 8, . Under some further conditions,
it was proved in PRAKASA Rao (1983a) that

LA
T (Gup-0) S N (0. %) (28)

-1
as T~ and n €' 0.

Following Rao (1973), an estimator 85 of 0 is said to be first order efficient if
there exist non random functions a(6) and B(0) such that
—— 1log Lo(8
zE2r® o (0)-16) 7% (6, 6) 50 oo T ~w. 2.9)
It has been shown in PRARASA Rao (1983b) that the LSE is firat order efficient as
1

Tacand n 2T 0.

We might mention here that LE BReTON (1975) studied asymptotic properties
of the descritized versions of MLE for linear parametric stochastic differential
equations with a(6, z)=0A(zx). He obtained the closeness of these to the MLE
when the total sample path is available. Such results are unknown for non-linear
stochastic differential equations. Results of BERRY-ESSEEN type bounds for distri-
bution of LSE as well as MLE are worth investigating in both the cases of descri-
tized sampling as well as in the case of continuous sampling.

BavEes Estimatlon (BE)

Suppose A is a prior probability measure on (@, B) where 9 is the o-algebra of

BoREL subsets of 2. Assume that /I has a density A(.) which with respect to the

LeBESGUE measure and the density is continuous and positive in an open neigh-

bourhood of 8, the true parameter. Let 6, be an arbitrary but fixed value of 6.
We assume that the process X has been observed continuously on [0, 7. The

posterior density of 6, glven X7 ={X(t): 0=t =T} is defined by

d;t,

dal A(6)

d/lo

ej £y A6) a8

p(0| X7y = (2.10)

d,ur

-

where log T is given by (2.3).
w

1
Let p*(t | X(¢): 0=t =T’} be the posterior density of T'% (§ —6;) where 6 is an
MLE of 0 and define
r _1
d"'oTHT 2
Y A
."51'

yolt)= (2.1
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Suppose
log yrif) ~ —% B3 as. 88 T oo (2.12)

for each t where #>0 and there exists 0 <s<g such that
oy 2
[ B exp (——(ﬂ—e) %) A <oo. (2.13)

Under some additional conditions, BAsu (1983a) proved that
1 (2.14)
d¢=0 a.s.

;ign_ _[K(f) P'(¢|X(t):0§t§T)—(%)?exp(—%ﬂﬂ)

which is the BERNSTEIN-vON MIsEs theorem. Praxasa Rao (1981) proved the
above result for linear parametric stochastio differential equations and it was
proved for diffusion fields in PragAsA Rao (1884). As a consequence it can be
shown that BAYES estimator (BE) 07 and MLE 6, have the seme asymptotic pro-
perties and agymptotic distributions for suitable class of Joas functions of the type
1(6, @) =1 (|6 — P|) and I(.) non-decreasing.

3. Nonparametric Inference

Suppose the functional form of the drift coefficient in (1.1) is unknown and the
problem of interest again now is to estimate the drift a(.) based on either discrete
or continuous sampling of the process X satisfying (1.1) on [0, 7'].

Continuous sampling
Suppose & complete observation of the process X over [0, 7] is available.

Method of kernels: Suppose that the solution {X,, £ =0} of (1.1) is a stationary
Marxov process. For each ¢€[0, ), define the transition probability operator
Hif=E(f(X,) | X,) (3.1)
for any bounded BorEL-measurable function f. Define
i
E2(H,))? (X)

[Hila= sup
TEZ) =0

: (3.2)
E2f1(X)
The operator H, is said to satisfy the condition ((s, «) if there exists some s=>0
such that

|H,fp =a (3.3)
where 0 <a<1. Since {X;} is & stationary MarROV process, the family of opera-
tora {H,, ¢ =0} is & semi-group and it can be ehown (See BaxoN (1977)) that

|H <5 with f=a'"<1. (3.4)
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Let K(.) be a bounded probability density on R and A be a bounded positive
function on R, such that

) Bi0 88 f—o (3.58)
13
(i) % =Df b ds<eo (3.5b)
and
(i) Vi~ 88 f—oo. (3.5¢)
For t>0, let
1
1 -X,
Pl = f K ("’T) ds. (3.6)
]

pi{(zo) can be considered as a kernel type estimator of the marginal density p(x,) of
X, Banox (1978) studied consistency properties of such density estimators. He
has also given sufficient conditions under which a process X which is a solution of
(1.1) satisfies the condition G4(s, «) for some §>0 and 0<a<1. Relation (1.2)
implies that
1 1
pla) alz) = 5 0%2) p(2) +5 o) ple)

and hence

aw) =3 {otm) 250+ o)) )

provided p(z) +0. One can estimate the derivative pX(z) of the density p(z)
again by the method of kernels (see PRARASA R0 (1983b).

Theorem 3.1. (BaNoN (1978)). Let Ky(.) be a bounded probability density function
and K,(.) be a continuous probability demnty function of bounded variation such that

KD(.) is bounded. Let k, be a bounded poaitive function such that
(i) hi0 a8 oo, (3.8a)

I3
{ii) v=[ hds<eo (3.8b)

[
(iii) p—oo ad t—-oo and (3.8¢c)
(iv) By~ @8 t—o. (3.8d)
Define Ly z-X,

fh_.x&" (—h' )da
qle)=tr—m———— (3.9)

fx,( )da+s

for some fized £>0. If p™)(.) is continuous and bounded then

(=)
P(z)

a(z) > glz) = Lo, (3.10)
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In particular, one can estimate the drift coefficient a(z) by

alx) =1 () +otz) ) (3.11)
and
o) Salz) 88 tew (3.12)
If o(*) is unknown but 2 constant, then one can obtain an estimator
1

1
A (3.13)
of o where {;} is & positive sequence tending to zero and ¢, =0 and ¢, +7;s¢,,,
i=1,2, .. 1f E(X%) <e, then it can be shown that

2 q4'm

g,— 0% 88 N -
by methods in WoNG and Zakar (1965) (see BANON (1978)). Substituting o; as an
estimator of o2, we have

ay nl2)= ;l oaqi(2) (3.14)

as an estimator of a(z) and
P
a (x)>alr) a8 twe and 7o (3.15

Strongly consistent estimators of a(z) can also be obtained (see Baxox and
NGUYEN (1978)) by considering a wider class of estimators of p(z) of the type

plz)= ‘ f his) H(k(s)) ds’—l l f l H(kis)) K (fh(—;—’) ds
0 [

Observe that the estimators suggested are recursive in nature and hence are easy

) (3.16)

to compute.

Method of delta-familles

A family {8, k> 0} of non-negative L_-functions is called a delta-family of positive

type « if
(i) there exist constants 4 >0, B>0 such that
B
1= [ 8)lz) dx|=0() (3.17a)
-1
(i) sup {I6(@)] : Iz| 24} =0(k") (3.17b)
(iii) 104ll 2 A=t (3.17¢)
ag b 0.

Let A(t) be & non-negative real valued function such that A{f)10 as t ~oo and h(t)
is locally integrable i.e.,
{

)= Mo ds <o, plt)~ee s toen. (3.18)
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Define
H

:n."(z)=L f h(8) dpy (x—X,) ds. (3.19)
0

»{0)
PrarAsA Rao (19879b) studied asymptotic properties such aa consistency and
asymptotic normality of this estimator. If the family {4,, >0} is such that the
above conditions (i) to (iii) hold and, further if
(iv) 0,{-) is differentiable for every k>0 such that
183 = A=,
then
e
[ B &), (z-X,) de
glz) =" (3.20)
J B Sny ly— X,) de
o

PO)
)
construct estimeators of a(z) as before both in case o(.) is known or o(.) is unknown
but constant. For details regarding consistency and asymptotic distribution. see

PRAKASA Rao (1979b, 1983D).

is an estimator of whenever p(z} +0 and one can use this estimator g,(x) to

Method of Steves

If the drift a{.) is completely unknown, but we are interested in estimating it at o
point, then we have proposed estimators above. Let us now consider the case of
atochastic differential equation

dX,=a(X,)dt +dW,, t=0, X,=X (3.21)
where we would like to estimate a(x) for €[ — A4, ] for some fixed 1> 0. Let
x 14
ufz)= [ exp(—?of a(z) dz) dy. (3.22)
0
Suppose
liT u(r)= 4o and lim u(z)= -, (3.23)

The process X, will be recurrent in view of the above condition (see Frirpyax
(1975), Ch. 9). Let
e,=inf {t=0, [ X,|=1},
R=inf{tze, X,=0},
e =inf {t=R;: |X||=2}, i=1,2, ..
R;, =inf {t=e;,,: X;=0}, i=1,2, ..
and
Xy =Ly, 0) X,
Xi=Igon_ ) Xpy_jse $=2,8, ..
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Obgerve that X/, X7, ... are i.i.d random processes. Here 1 ,(t) is the indicator
function of the set 4. The parameter space @ here is the space of LipscrITZ conti-
nuous functions i.e.,

O={a(x): 3L such that |a(z) —a(y)| =L |z —y| for all z, y€R} (3.24)

endowed with the metric
'

dla. )= (E [ty - ds)

m T m
S,,,={ PN a,e| T : ) la| s K log m, a,=a_, for each k} (3.25)
k=-m -m

for some constant XK. Then [} 8,, is dense in O since any a¢ 6 can be uniformly
Mmea|

approximated by the trigonometric polynomials on [ — 4, 1]. The Rapo~N-N1kobyM

derivativeof the measure generated by the process X with respect to the Wiexen

process given that the process X is observed upto time e, is
o o
1
f(z, a)=exp (f a(X,) dX,—Ef al(X,) ds)
¢ v

where e, is the first exit time of the process X, for [ — A, A]. Define

Ly{a) ='1? =z}, a) (3.26)
and
My ={x€8, | Lyla)= susp L)} - (3.27)
BESp

Hence M7, is the set of all maximum likelihood estimators in S, of « given the
processes X!, X}, ..., X GEMAN and Hwane (1979) proved the following theorem.

Theorem 3.2. If m,=n'"* for some £>-0, then M7, —+a a.s.

The method proposed above is known as ““The method of sieves” suggested by
GRENANDER (1980). Here '‘Sieve" refers to the subspace over which the likelihood
function is maximized. The properties of sequence of estimators so obtained
depend on the growth of the sieveas compared to the growth of thesamplesize. The
reader is referred to GRENANDER (1980) and GEMAN and Hwaxe (1979} for more
details. NouyEeN and PHAM (1980) used this method for the estimation of a{.) in the
stochastic differential equation

AX()=alt) X(t) dt +dW(t), X(0)=X, t=0 (3.28)
where
a(.yeL¥([0, T))

for every T'=0.
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Diacrete sampling

In the following discussion, we shall assume that o{.)=1. We shall now describe
estimators of a(.) when a sampled version of the process {X,. t=0}, say. (X,
1=i=n} where X;=X,; 1 =i=n is available. In analogy with the eatimator sug.

gested in (3.14), one can estimate a(x) by
)] ! (3.29)

a,(z)=[ 3K “’ = x ][e+2K

=1
when the discrete set of obaervuuon X,-. 1=si=n are available where the kernels
K, and K, are bounded densities on R, {k;. i = 1} a decreasing secuence of positive
numbers such that 2;,0 as i —c and ¢ is a fixed positive number. Baxox (1977)
studied the weak consistency and asymptotic normality of such estimators. For
simulation purposes, one can use

t,=iT, T=>0
hy=hi? where A;=0 and ﬁ=%,
K(z)=2 for —1<z=1

=0 otherwise
and
Kiz)=2(1—jz]) for —1<zs!
=0 otherwise

Let a,,(z) be the estimator so obtained.
Since the drift a(x) can be obtained as a limit of conditional expectation i.e.,

1
alz)=lim - E (X, - X, | Xo=2), (3.30)
another estimator of a{x) at z for which p(x)>0 can be chosen as

z - X;
t0=[5 X=Xk (FE)| [+ Z & () 6
where K is a square integrable kernel with bounded support, 0 <110 8§ i ~w,

t,= Z’ 7;and k;=h{t;) where 2 : R* ~R* and A()i0 as? -~ and £>0. This estima-

j=l
tor was suggested by NouvEN and PAAM (1981). They showed that the estimator is
asymptotically normal under some conditions. For simulation purposes, one can
take

=i M=kt ?.
2 1 .

Suppose we choose a=r and ﬂ=§ for comparison purposes. Let d4,,(r) be the
estimator obtained for these specific parameters.

An estimator based on nonparametric estimation of regression function

E{Xiysl| X,=2) (3.82)
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given & Margov sequence sampled from stationary MAREOV process is suggested
by Puan (1981). We do not discuss the details here.
Noting that e(x) is the limit of a conditions expectation, GEMAN (1979) sug-
gested the estimator
o) =2 37 = (X,—z) (3.33)
f=] *3

where 7,0 a8 4o and X;= X, ,, with {¢}, a sequence of stopping times such that
ty=inf {t=0, X}=2z}, g =inf {t=t +7;, X, =2} .

He has proved that @,(z) is consistent both in strong and weak sense and asympto-

tically normal under some conditions. Let z,=z, ™. The optimal choice is a;=]5

in the ser:ae of minimizing mean square error. Let a,,(z) be the estimator obtained

witha= 3

Banon and NGUYEX (1981 a, b) observed through simulation studies that the
estimator a,,(z) gives the “best” results. If o(.)=0.constant but unknown, then
one can use either d,,(z) or d,;(z) but computation of &,,(x) is expensive. For fur-
ther details about simulation studies of the above egtimators see, Baxox and Nav-
YEN (1981a, b).

4. Remarks and Open Prohlems

The problem of estimation of the rate of convergence the distribution of either the
MLE (:)7. or the MPE 0., or that of the LSE é,,‘,. to normal distribution is of extreme
interest. This problem is solved in the classical i.i.d. case by Pranzacr (1971) and
in PrarAasa Rao (1973) for discrete time stationary MARROV processes for MLE. No
results are known for continuous time processes. Investigation of the BERRy-Es-
SEEN type bound to obtain the exact rate of convergence in the central limit theo-
rem for stochastic integrals is of independent: probabilistic interest. Bounds on the
difference |éT — 07| of BE and MLE are of interest to determine the effect of prior
on the estimator. Results of this type for discrete time stationary MARKOV proces-
ses were obtained in PRagasA RA0 (1979¢). For other open problems in the para-
metric cage, see section 2.

Let us now look at the nonparametric aspect of the problem. Consider the sto-
chastic differential equation

dX,=a(X,) dt +dW, t=0, X,=X. (4.1)

Suppose it is known that af.) is monotone increasing. Given that the process is
observed upto time 7’ say, how to obtain the MLE of a(.) subject to the condition
that a(.) is monotone increasing and what are its asymptotic properties? Results
of this type in the classical case are given in PRaxAsA Rao (1969, 1970), BArLow
18 statistics 16 (1086) 2
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et al. (1972) and GRENANDER (1956). Optimality properties of nonparametric esti-
mators of drift is the subject of investigation in Israomov and Hasminski (1981),
Chapter 7. For a comprehensive survey of non-parametric functional estimation
for stochastic procesees, sce Praxasa Rao (1983b).
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