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Some results on intersection properties
of balls in complex Banach spaces

by
A. LIMA (Ass) and A. K. ROY (Calcutta)

Abstract. Predual real I'-spaces are characterized by the 4.2. intersection property. The
structure of real spaces with the 3.2 intersection property and of real and complex spaces with
the 4.3. intersection property is fairly well understood. In this paper we study complex spaces
with the n.k. intersection property when n > k > 4. We show that the 54. intersection property
characterizes complex L'-preduals, and that the (2n+1).2n. intersection property implies the
almost (2r+1){2n—1). intersection property in the complex case.

1. Introduction. Let A be a Banach space over the complex scalars C.
B(a, ) denotes the closed ball in A with centre a and radius r. Let nk be
integers with n > k > 2. We say that A has the almost nk.I.P. (to be read as
the almost n.k. intersection property) if for every family {B(a), r)}j«, of n
balls in A such that for any k of them,

0 B@,n)#0,
we have
lfu\l B(a, r;+e)# @ for all ¢ > 0.
(Il we can take & = 0, we say that 4 has the n.k.I.P) Introducing the space

H"(A%) = {(x;, ..., x)e (A% zj: x, = 0}

with the norm [|(x,, ..., x)l| = Z JIx,|l, it was proved in [7] that A has the

almost n.k.LP. if and only if each extreme point (x,, ..., X,) in the unit ball
of H"(A*) has at most k nonzero components. Thus examination of the
extreme point structure of the unit ball of H"(A*) furnishes a useful analytic
device for the study of the intersection properties of balls in Banach spaces,
and this has been effectively used in obtaining various characterizations of



y

complex ['-preduals (see for example [4], [7], [8], [9]). We pursue this
approach here by proving that if A has the (2n+ 1).2n.I.P. then it has the
almost 2n(2n—1).L.P. (n > 2), which yields, as a particular consequence, the
interesting fact that A has the 54.LP. if and only if 4 is an I’-predual. We
also prove that if A has the 2n{2n—1).L.P. and if (x;, X3, ..., X2,-1) IS an
extreme point of the unit ball of H?"~!(4*) with all its components non-
zero, then n—1 of the functionals x,, X, ..., Xz,~, are linearly independent
(over C) and the remaining ones are expressible as linear combinations of
these functionals. We conclude by describing the analogue in the context of
the higher intersection properties of balls considered here, of the weak
intersection property which has proved useful in characterizing L' -preduals
(€42, (7). .

It should be emphasized that for the validity of the results proved in this
paper it is necessary to work over the field of complex numbers.

2. Notations and main results. Let A} and H"(A4*), denote the unit balls
of A* and H"(A*) respectively, and let 9,AY, 0. H"(A*), denote their
(respective) sets of extreme points.

If A has the (n+1).n.I.P. and (x,, ..., x,)e 3,H"(A*), with all x, # 0, it is
known (see [8], Lemma 3.3 and the remark following it) that x/lix,lled A}
for all k. We assert that all these functionals are distinct. To prove this,
suppose for instance that x, = cx, for some ¢ > 0. Writing

1 [ c c
(X|, b TR X,.) = (0, X3, mX;, veny 1—+cx,,)+(cx;. 0, mxg, ey mx.)

we get a contradiction with the fact that (x,, ..., x,) is an extreme point in
H"(A*),.

The following result was suggested by Lemma 3.3 and Theorem 3.6 in
[4] and (5]

ProposiTION 2.1. Suppose A is a Banach space with the (n+1).n.I.P. and
let x =(xy, ..., x,)ed, H"(A*); with {|x|| =1. The following statements are
equiralent:

(1) xed, H"(A*%), with all x, # 0.

(20 {x/lixll}a=, are affinely independent points of A} over R with each
xfllxlle 8. A%

(3) The points {|lxll, x}8=1 S Rx A* are linearly independent over R and
each xfl|x,le d, At.
Remark. (2) and (3) are equivalent if we delete the requirement that

xdllxle 8 AY.
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L]
Proof. (2} < (3). 3, ai(llxll. x) =0 for some c,e R is equivalent to
k=1

L] n
Y alxll=Y ax,=0 for some c,eR.
=1

Wwriting , = ¢ lixll, we see that this in turn is equivalent to

L x. _ X n
hX [‘||x.|| =0 for some f,e R with Y 1, =0.

k=1
(1) = (2). As remarked above, it follows from (1) that x/||x|e 6. A for

all k and that they are distinct. Let u = Z lIxl e, where ¢, is the measure

=1
with unit mass at x/lx;]|. Clearly ueZo where Z, denotes the set of
probability measures on A} representing 0. By Proposition 1.6.10 in [1], (2)
follows when we have proved that u is an extreme point in Z,.
Thus suppose uy, u;e Zo and 2u = p, + p,. It is obvious that #y and p,
n

have their support in {x,/l|x]l, ..., x/lIxI}. Thus we can write g, = Y o
k=1

and yu, = Z Biex where oy, B, 2 0, a,+ B, = 2||x,|| for all k and

‘Z e xfllxdl = ¥ Buxdlixdl =0
=1 k={
Writing

2(xq, -ees xg) = (@ X /Xyl - oy XWX +(By Xy /XL, - o B XWXl
and using the fact that xe 8 H"(4*),, we see that a, = B, = ||x,|| for all k.
Thus we get u; = p; =y and it follows that ued, Z,.

The proof of (2) = (1) easily follows from Proposition 16.10 in [1] by
an argument similar to that of (1) = (2) above.

ProposiTion 2.2. Let (x,, ..., x)e d, H"(A*), with all x, # 0. Then we
have spang{x,, ..., x,) = R""! where = means linear isomorphism.

Proof. Let E =spany{x,, ..., X,}. Since Y x, =0, we have dimyE

k=

< n—1. Assume for contradiction that dimgE < ni2. By a theorem of Helly
every family of n convex sets in E* such that any n—1 intersect has a
nonempty intersection. Thus E* has the n{n—1).L.P. But then every extreme
point in H"(E), has at most n— 1 nonzero coordinates (see Theorem 2.10 in
[7]). Thus (x,, ..., x,) cannot be an extreme point in H"(E), or in H"(4*),.
Remark. In this paper our main interest is in complex Banach spaces.
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Propositions 2.1 and 2.2 are, however, valid for real spaces as well.
In the following we shall reed a lemma on complex matrices.

Lemma 23. Let M =B+il where B is a real pxp matrix and |

is the identity matrix. If N(M) denotes the null space of M, we have
dim¢ N (M) < p/2.

Proof. Let xe C®. We have xe N (M) if and only if Bx = — ix, which in
turn is equivalent to BX = iX where % is the complex conjugate ol x. Since
Bx = —ix and Bx =ix if and only if x=0, we get N(B+il)n N(B~il)
= {0}. Thus dim.N(B+il) < p/2.

LemMa 24. Assume A is a complex Banach space with the almosi
(n+1).n.1.P. and assume (x,, ..., x,)e 0. H"(A*), with all x, # 0. Then there
exist numbers a,;, 1 < k, j < n—1, with a,e R for k # j and a,, e C\R for all k,
such that for k=1,...,n—1

n-1
a;x;=0.
J=1

Proof. Let E =spangix,, ..., x,}. By Proposition 2.2 we have dimE

=n~1. As noted in [8] (see Lemma 3.3 and the remark following i)

x/llxll€ 8. AT for all k. Let @ = 1+i. Then §+8 = 2. By Theorem 3.1 in [8],
we can write in H"*!(4%)

( Ox,, Ox,, 2x,, 2x3, ..., 2x,)
=( 0, by,0x;, by3xa, braxs, .o, byae1 X
+( by 0x,, 0,  baixz,  bagxs, ..., baaey Xd
+( by 0xy, b3y Oxy, 0, byaxz ..., byas1x)
Foo e e e e e
H(baer,1 0%, buey,20x1, bpry3 %20 Basra X3, ooy 0)

where all b; > 0 and

0 + by + by 4t by, =1,
bz +0 + by +.H by, =1,
by + by + 0 +ooot by =2

bint1+ bapes+  byars+...+ 0 =2,
If blz #* 0, then

bia(1=0xy+byaxa+ ... +by pey X, =0.
We have

biaer Xa+bpari X2t o 4By ey X, = 0.
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Subtracting, we get
(br2(1 =D =by i) Xy +B13=b) ps )X+ .. + by —b) o1} Xp- | =
Let

ay =b(1=i)=by a1, @12 =byy~bjaui..ciay,, =bi,—by .,

and we get "Z:“U-‘} =0 with a;,€C\R and a,;eR for j # |.
If b,, =IO. then b,, # 0 for some k = 3, say by, # 0. Thus we have
(B (1 +0+b32(1 =) x) +b3g X3+ ... + b304, X, = 0.
If by, = by;, then we have
by +b32) X, + by x5+ ...+ b3 0y X, =0
and this gives Xx,espang!x,.....x,). But this contradicts dimE = n—|.
Hence we must have by, 3 by,. We can thus proceed as in the case with

b,2 # 0 to achieve
n=1
Y ayx;=0 with a;,e C\R and a;,e R for j# 1.
j=1
Applying the same reasoning to X, X3, ..., X, gives the claimed set of
equations. The proof is complete.
ExampLe. Let 4 = C* with /,-norm. If

1 i -1 —i
=1} x=|-1] x3=|—=i| x¢= i
1 —i i -1

then x = (x,, x3, X3, xg)€ 8, H*(A*),. In this case, it is not possible to write
ayy Xy +a,x+a3x3=0

with a,, € C\R and a,,, a;;€R. Thus A does not have the 54.1.P.

THEOREM 2.5. Assume A is a complex Banach space with the almost
(2n+1){2m.L.P. Then A has the almost (2m)(2n—1).1.P.

Proof. Suppose (xi,..., Xz,)e 8, H?"(4*),. It suffices to show that
some x, = 0. Assume for contradiction that all x, # 0. By Lemma 2.4 there
exist numbers a,;, 1 <k, j<2n—1, with a,;e R lor k # j and a,,e C\R for
all k, such that for all k=1, 2,..., 2n—1

2n~1
(*) Y ayx;=0.

i=1
Clearly we may assume Ima,, = 1 for all k. Let p=2n—1 and M = (a,). By
Lemma 23 we get dim¢N(M) < n—14, so that dim¢N(M)<n—1. By a
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standard result in linear algebra (see [3], p. 12), the complex dimension of
the solution space of (») is <n—1. Hence spancix,,..., Xz}
= spang {x;, ..., X24-1} has complex dimension at most n—1, and therefore
dimgspang{x;, ..., X3,} € 2n—2. This contradicts Proposition 2.2 which
says that spang{x,, ..., x;,} = R*~'. This completes the proof.

The above argument gives some additional information when A4 has the
(2n)(2n—1).1.P. as well.

THEOREM 2.6. Assume A is a complex Banach space with the almost
(2n)(2n—1).I.P. and assume (x,, ..., X3,—1)€ 8, H** 1 (4®), with all x, £0.
Then there exist n—1 (complex) linearly independent functionals among
{Xy, X2y .-v, X35—1} and the remaining n functionals x, are complex linear
combinations of these n—1 functionals.

Proof. As in the proof of Theorem 2.5 we get

28-2
Y ayx;=0
Jj=1
but now with 1<k,j<2n—2 We also get, with M =(a,)), dim¢N(M)
< n—1. By using Proposition 2.2, it follows that dime N(M) = n—1 and that
Spane {X;, Xg, -..y Xgq—y) 2 C*7 L

CoroLLARY 2.7. If a complex Banach space A has the almost 54.1.P. then
A* is isometric to an L (u)-space.

Proof. Let n=2 in Theorem 2.5. Then we deduce that A has the
almost 4.3.1.P. By Theorem 4.1 in [8], it follows that A* is isometric to an
I} (u)-space.

CoroLLARY 2.8. If @ complex Banach space has the almost 54.1.P,, then it
has the almost n3.1.P. for all n.

Proof. It is known (see e. g. [8]) that predual I!(u)-spaces have the
almost n3.1.P. for all n.

If dimcA =k, it follows from Helly’s theorem that A has the
(2k+2)-(2k + 1).1.P.. Hustad [5] has proved that & (C) does not have the (2k
+1)(2k).LP.

3. Examples. We shall give some examples of spaces with the
(2n){2n—1).1.P. Let L(X, Y} denote the Banach space of bounded linesr
operators from the Banach space X to the Banach space Y. Since L(f}, 4}
=(A®...®A)" and also L(I], A) = L(A*, ) by the map T T*, we
conclude that if dimeA =k, then A, L(f], A) and L(A*, I},) bave the (2%
+2)(2k+1).1.LP. by Helly's theorem.

ProposiTiON 3.1. Assume dim¢ A = k < co0. If X = I (u) for some measure
u, then L(X, A) has the almost (2k+2)(2k+1).1.P.

The proof is similar to the proof of the next result.
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Prorosirion 3.2. Assume dimeA =k <co. If X* =D () for some
measure |1, then L(A, X) has the almost (2k +2)(2k+1).1.P.
Proof. Let T,,..., Ty, e L(4, X) and let r,,...,rz,+z>0 Assume

that any 2k+1 of {B(T,, r)}2t%? intersect. Let ¢ > 0. Since Y = Z T.(A) is

a finite-dimensional subspace of X, there is a subspace Z of X such that Z
=I5 (C) for some m and d{x, Z) <¢|lx|| for all xe Y (see [6]). There is a
norm-one projection @ in X with Q(X) = Z. We get ||T,— —QTJ| <& for all n.
Since QT,e L(A, Z) = L(A, I7}), it easily follows from the remark preceding

Proposition 3.1 that
2%+2

N B(T,r,+e) # Q.

a=1

The third example shows that some spaces of continuous functions have
the (2k+2)(2k+1).L.P.

ProposiTioN 3.3. Assume that dim¢A = k < 0 and that S is a compact
Hausdorff space. Then C(S, A) has the almost (2k +2){2k +1).I.P.

Proof. It is well known that we can identify C(S, A) with the injective
tensor product C(S)®A (see [2]). Let ¢ > 0 and let {B(f, r)}?1? be balls in
C(S, A) such that any 2k + 1 intersect. Arguing as in [2, p. 225], we find an
open covering {U,}j-=, of S, a partition of unity {g;}]., subordinate to this
covering and points w;elU;, 1<j<n such that if we put h(w)

Zg,(w)f(w,), then | fi(w)—h(w)l| <& for each weS and each i. It
I'oIIows that any 2k+1 of the balls {B(h, r;+¢)}?21? intersect.

Let x;; = f(w))e A. We shall identify & with Z 9;®x; in C(S)® A. Let

E =spanlg,, ..., g,} € C(S). Since E is generalcd by a partition of unity in
C(S), it follows that E is isometric to I7,. Thus E is the range of a norm-one
projection P in C(S). E®A is a closed subspace of C(S)®A by Proposition
7. p. 225 in [2], and it is the range of the norm-one projection P®I in
C(S)®A. Thus it suffices to show that 7 ®A has the (2k+2)(2k+ 1).1.P. We
have the identifications

I, ®A = K5, A) = L(F}, 4)
and it follows from Proposition 3.1 that I ®A has the (2k+2)(2k+1).LP.

4. The n.k. intersection property. It is known that the n.2.L.P. with n > 4
(n3.L.P. in the complex case) characterizes ['-predual spaces. The
requirement that any two balls (any three balls in the complex case) intersect
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is equivalent to the nonempty intersection of their images under any norm.
one functional. As shown in Theorem 4.2 below, this can be generalized to be
correct also for the n.k.IP.

THEOREM 4.1. Let {B(a;, 1)}i-, be balls in A. The following statemems
are equivalent:

x
1) ‘ﬂl Bla, 1+e)# @ for all 6> 0.

(2) If E is a real Banach space with dimE < k—1 and T A— E is a real-
linear operator with ||T|| < 1, then (k\ B(Ta, 1) # @.
Proof. (1) = (2) if trivial, -
(2) = (1). Assume () B(a, 1+¢) = @ for some ¢ > 0. Then there exists
{71 (x4y ..., X )€, H"(,“l:)ll with

k
1< Y xfa)
=1

Let Ay denote the real restriction of A. Then we have (Ay)* = (A%),. Let E*
=spang {Rex,, ..., Rex;} in (Ag* Then dimE* <k—1. Let T*: E°
— (Agp)* be the identity map. Then we may consider ' Az — E as a quotient
map. Define ze E* by T*z = Rex;. Then (zy, ..., ;)€ H*(E*} since ||Rex]|
= ||xj| for all i. Moreover, since for any ae Ax and all i, Rex;(u) = T*z;(q)
= z,(Ta) we get

k

k
1< 3 Rexi(a)= Y z(Ta).
=1 =1
k
Thus ( B(Ta, 1) =@ in E.
=1
THEOREM 4.2. Let n> k 2 2. The following statements are equivalent:
(3) A has the almost nk.l.P.

(4) Let {B(a;, 1)}i=y be n balls in A. If for every real Banach space E with
dimE < k—1 and every real-linear operator T A— E with ||T|| <1 we

have (\ B(Ta, 1) % @, then () B(ay, 1+8) = @ for all &> 0.
=1 i=1

Prool. (3) =» (4) follows from (2) = (1) above.
(4) = (3). Assume (3) is false. By the proof of Theorem 4.3 in [10], it
follows that there exist n balls {B(a;, 1)}/=, in A such that any k intersect,

but (n\ B(a;, 1 +8) = @ for some g > 0. Now use (1)=>(2) above to see that
i=1
(4) is false.
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