ON STOCHASTIC MATRICES AND KERNELS S. NATARAJAN, T. E. S. RAGUAYAN, K. VISWANATH

I. Introduction. It is well-known that overy stochastic matrix has a an eigen-value with $(1,\dots,1)$ as a corresponding eigen-vector. Further, a stochastic matrix, as a linear transformation, leaves the positive orthant invariant, of which $(1,\dots,1)$ is an interior point Motivated by this, we show in Section 2, that any linear transformation in a finite-dimensional real vector space, positive with respect to a lattice cone and having a fixed vector in its interior is representable by a stochastic matrix with respect to a suitable wis, this gives a coordinate-free characterization of stochastic matrices. The following atension of this result to the infinite-dimensional case is obtained: If T is a positive operator with respect to a normal lattice cone K with interior in a real Banach space using a fixed vector in the interior of K, then T is essentially a stochastic operator. (for a precise statement, see Section 3.)

2. Stochastic matrices. Let V be a real normed linear space. A closed subset $K \subseteq V$, scalled a cone if

ii)
$$x, y \in K \Rightarrow \lambda x + \mu y \in K$$
 for $\lambda, \mu \geqslant 0$,

ii)
$$K \cap -K = 0$$
 (the zero element of V).

First a cone K, we can define a partial order \leq on V by writing $x \leq y$ if and only if $y-x \in K$. K is a lattice cone if K is a lattice with respect to the partial order \leq ..., linear transformation T of V into itself is positive (with respect to the cone K) if $K \subseteq K$.

Theorem 1. Let K be a lattice cone with interior in a real finite (n-) dimensional sector space V. Let A be a positive transformation (with respect to K) with Ax = x for one x in the interior of K. Then there exists a basis $\{e_1, e_2, \ldots, e_n\}$ for V with respect to which A is represented by a stochastic matrix.

10 Теория вероятностей и со примонения, № 2

Proof. Since K is a lattice cone with interior, by a well-known theorem of Yudia (see [3], p. 22), there exists a basis $\{e_i, e_2, \dots, e_n'\}$ such that

$$K = \left\{ y : y = \sum_{i} y_{i} e'_{i}; y_{i} \geqslant 0, i = 1, 2, ..., n \right\}.$$

Since $x = \sum_{i} x_i e'_i$ is an interior point of K, $x_i > 0$ for each i. Further $e'_i \in K$ for each i and $AK \subseteq K$. Thus if we write

$$Ae'_j = \sum a'_{ij}e'_i, \quad j = 1, 2, \ldots, n,$$
 (1)

then $a'_{1,j} \ge 0$ for i, j = 1, 2, ..., n.

Consider the new basis $\{e_1, e_2, \ldots, e_n\}$ defined by

Let

$$e_j = x_j e'_j, \quad j = 1, 2, ..., n.$$

$$Ae_j = \sum_i a_{ij} e_i, \quad j = 1, 2, ..., n,$$

i. e.,

$$Ax_je_j' = \sum_i a_{ij}x_ie_j'.$$

Therefore

$$Ae'_j = \sum_i a_{ij} \frac{x_i}{x_j} e'_i$$
 for $i, j = 1, 2, \ldots, n$.

Using (1), we get $a_{ij} = a'_{ij}(x_i/x_i)$ for i, j = 1, 2, ..., n. Thus $a_{ij} \ge 0$. Since $Ax = x_i$. $\sum_{i=1}^n a'_{ij} x_j = x_i$, so that

$$\sum_{i} a_{ij} = \frac{1}{x_i} \sum_{i} a'_{ij} x_j = 1 \text{ for } i = 1, 2, ..., n.$$

Thus the transformation A corresponds to the stochastic matrix (a_{ij}) in the basis $\{e_1, e_2, \ldots, e_n\}$.

Similarly for the doubly stochastic case we have the following

Theorem 2. A necessary and sufficient condition that the matrix of A of theorem 1 be doubly stochastic is that $A^*\sigma(x) = \sigma(x)$ where σ is the canonical isomorphism of V on to V^* corresponding to the basis $\{e_1, e_2, \ldots, e_n\}$.

Proof. Sufficiency. Since
$$x = \sum_{i} e_{i}$$
, $\sigma(x) = \sum_{i} f_{i}$ where $\{f_{i}, f_{2}, ..., f_{n}\}$ is

the basis in Ve dual to {e1, e2, ..., en}. Also

$$A^{\bullet}f_{i} = \sum_{i} a_{i}if_{i}.$$

Thus $A^*\sigma(x) = \sigma(x)$ gives $\sum_i a_{ii} = 1$ for i = 1, 2, ..., n, i. e., the matrix (a_{ij}) is doubly stochastic.

The necessary part follows trivially.

3. Slochastic kernels. A stochastic matrix may be thought of as associating a probability measure on a finite set with every point of the set. This leads us to the following definition of a stochastic kernel. We restrict ourselves to compact Hausdorff spaces.

Let S be a compact Hausdorff space, $\mathfrak B$ the class of Borel sets of S, C(S) the space of revalued continuous functions on S and C+(S) the cone of non-negative functions in C(S). Recall that C+(S) is a normal lattice cone with interior. (A cone K is normal if there exists a $\mathfrak C > 0$ such that $\|x+y\| \ge \delta \max\{\|x\|, \|y\|\}$ for all $x, y \in K$.)

Definition. A function K(s, E) defined on $S \times \mathfrak{B}$ is a stochastic kernel if $K(s, \cdot)$ is a regular probability measure on (S, \mathfrak{B}) for each $s \in S$, such that for evedy f in C(S), the function g defined by

$$g(s) = \int_{a} f(t) K(s, dt)$$

is in C(S).

Observe that our definition reduces to the usual definition (see e.g. [3]) if there exists a measure v on (S, \mathfrak{A}) such that $K(s, \cdot) \ll v$ for every $s \in S$.

It is easily seen that the linear transformation T on C(S) (to be called a stochastic operator) defined by

$$(Tf)(s) = \int f(t)K(s, dt)$$

is bounded and has norm 1. In fact, the spectral radius of F is 1. In case K(s, E) is measurable in s for every fixed $E \in \mathfrak{B}$, it can be considered to be the transition function of a Markov process. The corresponding operator on C(S) has been studied in detail by Rosenblatt [4].

It is interesting to note that with our definition, the identity operator is a sto-clastic operator and corresponds to the stochastic kernel $K(s,\cdot)=\delta_s(\cdot)$ where δ_s is the Dirac measure at s defined by

$$\delta_s(E) = \begin{cases} 1 & \text{if } s \in E \\ 0 & \text{if } s \notin E. \end{cases}$$

further we may define a large class of stochastic operators which are analogous to the permutation matrices in finite dimensions. The motivation for this definition is the observation that the effect of a permutation matrix on a vector is only to permute the components of the vector.

Definition. An operator P on C(S) is called a permutation if there exists a homomorphism π of S onto S such that

$$(P/)(s) = f(\pi^{-1}(s)).$$

Clearly for all f in C(S).

$$(P/)(s) = f(\pi^{-1}(s)) = \int_{s}^{s} f(t)K(s, dt)$$

where $K(s,\cdot) = \delta_{s-1,(s)}(\cdot)$, i. e., P is a stochastic operator with kernel $\delta_{s-1,(s)}(\cdot)$

Every stochastic operator leaves the normal lattice cone $C^+(S)$ invariant and has a fived vector in its interior, namely the function f(s) = 1. The following theorem goes in the appeals the direction.

Theorem 3. Let K be a normal lattice cone with interior in a real Banach space V. If I is abunded positive operator on V (i. e., $TK \subseteq K$) and Tx = x for some x in the interior of K, then there exists a compact Hausdorff space S and a bicontinuous isomorbium G of V onto C(S) such that T is carried to a stochastic operator by G.

Proof. By a well-known theorem of M. Krein and S. Krein [5] and Kakutani [2], there exists a compact Hausdorff space S and a linear bicontinuous lattice isomorphism τ of V onto C(S) such that $\tau(K) = C^+(S)$. If $T_0 = \tau T \tau^{-1}$, it is clear that $T_0 = \tau T \tau^{-1}$, it is clear that $T_0 = \tau T \tau^{-1}$, it is clear that $T_0 = \tau T \tau^{-1}$. Hence $T_0 = \tau T \tau^{-1}$ is a bounded operator on C(S) with $T_0 = T_0 = \tau T \tau^{-1}$, and $T_0 = \tau T \tau^{-1}$, then for fixed $T_0 = \tau T \tau^{-1}$. Hence $T_0 = \tau T \tau^{-1}$ is a bounded linear functional on C(S) which is non-negative by the positivity of $T_0 = \tau T \tau^{-1}$. Hence we have, by Riesz's theorem,

$$(T_0f)^i(s) = \int f(t)K(s, dt), \quad f \in C(S),$$

where, for fixed s, $K(s, \cdot)$ is a finite positive regular measure on (S, Φ) .

Put
$$K_1(s, E) = \frac{1}{f_0(s)} \int_E f_0(t) K(s, dt)$$
. Clearly $K_1(s, E) \geqslant 0$ for all $s \in S$, $B \in \emptyset$.

Further.

$$K_{t}(s,S) = \frac{1}{f_{0}(s)} \int_{s}^{s} f_{0}(t) K(s,dt) = \frac{1}{f_{0}(s)} (T_{0}f_{0}) (s) = 1,$$

i. e., $K_1(s, \cdot)$ is a probability measure for fixed s. $K_1(s, \cdot)$ is regular, because $K_1(s, \cdot) \ll K(s, \cdot)$ and $K(s, \cdot)$ is regular.

Also for f in C(S),

$$\int_{B} f(t) K_{1}(s, dt) = \int_{B} f(t) \frac{f_{0}(t)}{f_{0}(s)} K(s, dt) = \frac{1}{f_{0}(s)} (T_{0}(f \cdot f_{0})) (s)$$

which is in C(S). Thus $K_1(s, \cdot)$ is a stochastic kernel. Put

$$(T_if)(s) = \int_a^{\cdot} f(t)K_i(s,dt).$$

The map $\tau': C(S) \to C(S)$ defined by $\tau'(f) = (1/f_0) \cdot f$ is a bicontinuous isomorphism such that

$$(T_1f)(s) = \int_{s} f(t)K_1(s, dt) = \frac{1}{f_0(s)} \int_{s} f(t)f_0(t)K(s, dt) =$$

$$= \frac{1}{f_0(s)} (\tau^{r-1}f)(t)K(s, dt) = (\tau^r T_0 \tau^{r-1}f)(s) = (\tau^r T_0 \tau^{r-1} \tau^{r-1}f)(s).$$

Putting now $\sigma = \tau'\tau$ we see that σ has the required properties and the theorem is proved.

We thank Dr. S. W. Dharmadhikari for helpful comments.

Indian Statistical Institute
CALCUTTA

Поступила в редакцию 23.12.65

RIBLIOGRAPHY

- [1] Ф. Р. Гантмакер, Теория матриц, М., Гостехиздат, 1953.
- [2] S. Kakutani, Concrete representation of abstract M-spaces (A characterization of the space of continuous functions), Ann. Math. (2), 42 (1941), 994-1024.
- [3] М. Г. Крейн, М. А. Рутман, Линейные операторы, оставляющие виваравиным копус в пространстве Банаха, Успехи матем. паук, ИІ, 1 (1948), 3—95.
- [4] M. Rosenblatt, Equicontinuous Markov operators, Теория вероят. в ее првыел. IX, 2 (1964), 205—222.

[5] М. Г. Крейн, С. Г. Крейн, Ободной внутренней характеристике пространства всех пепрорывных функций, определенных на хаусдорфовом бикомпактном множестве, ДАН, СССР, 27, 5 (1940), 427—431.

О СТОХАСТИЧЕСКИХ МАТРИЦАХ И ЯПРАХ

С. ПАТАРАЙАП, Т. Б. С. РАГАВАН, К. ВИСВАПАТ (КАЛЬКУТТА) (Ревоме)

В пастоящей заметие дается не зависящая от координат характеризация стохастических матриц. Вводятся стохастические ядра, представляющие собой обобщение стохастических матриц, а также найдена характеризация ограниченных операторов в Банаховом пространстве, являющихся, по-существу, интегральными операторами со стохастическими ядрами.