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PARAMETRIZATIONS OF G,-VALUED MULTIFUNCTIONS
BY
H. SARBADHIKARI AND S. M. SRIVASTAVA

ABSTRACT. Let T, X be Polish spaces, ¥ a countably generated sub-o-field of B,
the Borel o-field of T, and F: T — X a multifunction such that F(r) is a G, in X for
each r € T. F is J-measurable and Gr(F) € J @ B, where Gr(F) denotes the
graph of F. We prove the following three results on F.

(1) There is a map f: T X £ — X such that for each r € T, f{¢,-) is a continuous,
open map from T onto F(r) and for each 0 € Z, -, o) is §-measurable, where Z is
the space of irrationals,

(IN The multifunction F is of Souslin type.

(IMT) If X is uncountable and F(r), ¢t € T, are all depse-in-itselfl then there is a
F ® B, -measurable map f: T X X — X such that for each r € T, {1, -) is a Borel
isomorphism of X onto F(z).

1. Introduction. The object of this paper is to study G,-valued multifunctions. We
take 7, X to be Polish spaces, I a countably gencrated sub-o-field of %, the
Borel o-field of T, and F: T — X a multifunction such that F is 9-measurable,
Gi(F) € T ® B, and F(1) is a G, in X for each 1 € T. Definitions and notation
are given in §2. Gy-valued multifunctions arise in the study of C*-algebras, group
representations, etc. ([5}, {12]).

In (15], the existence of a J-measurable selector for F is established and this
article can be viewed as a sequel to [15]. Having proved the existence of a
measurable selector for F, several questions arise. Can we express Gr(F) as a union
of the graphs of measurable selectors for F? If yes, can we get these graphs to be,
moreover, disjoint? Naturally, for the second problem, F(¢), ¢ € T, must all be of
the same cardinality.

We approach the first problem in more than one way. In §3, we prove a
representation theorem for such multifunctions of the kind recently obtained by
loffe (4] and Srivastava [14] for closed valued multifunctions. In §4, we prove that
these multifunctions are of Souslin type in the sense of Leese [8]. This gives us a
very important relationship between F and closed valued multifunctions and
enables us to answer our question in the affirmative.

We consider the second problem in §5. By a very old and classical result of
Luzin ([9, p. 252}, [10]), the answer to this question is “yes” for countable-valued F.
In the case, F(r), ¢t € T, are all uncountable, we prove a parametrization theorem,
analogous to the one recently obtained by Mauldin [11), for F.

2. Preliminaries. The sct of positive integers will be denoted by N. S will denote
the set of all finite sequences of positive integers, including the empty sequence e.
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For each k > 0, we denote by S, the set of elements of S of length k. For s € S, |s|
will denote the length of s and if i < |5} is a positive integer, 5, will denote the ith
co-ordinate of s. If # € N, sn will denote the catenation of s and n. We put
3 = NV, Endowed with the product of discrete topologies on N, T becomes a
homeomorph of the space of irrationals. For 0 € Z and k € N, o, will denote the
kth co-ordinate of 0 and alk = (0,,...,0). If k =0, 0lk =e. If s € §, Z, will
denote the set {o € Z: 0|k = 5}.

D will denote the set of all finite sequences of 0's and 1's, including the empty
sequence e. C will denote the set {0, 1}¥. Endowed with the product of discrete
topologies on {0, 1}, it becomes a homeomorph of the Cantor set. For 4 € D,
k > 0,i € {0, 1} and & € C, d,, &, €|k, |[d| and di are similarly defined.

Let (X, %) and (Y, B) be measurable spaces. We denote by A ® B the product
of the o-fields % and B . We say that U is countably generated if there exist subsets
A,.n > 1, of X such that % is generated by {4,: n > 1). A nonempty set 4 € % is
called an A-atom if A D BEA =B = A or B=U. If X is a metric space, B
will denote the Borel o-field of X. If E C X X Y and x € X, E* will denote the set
{y € Y: (x,y) € E} and will be called the section of E at x. The projection maps
from X X Y to X and from X X Y to Y will be denoted respectively by [1%*Y and
1% %Y, or simply by I1, and I, if there is no ambiguity.

A multifunction F: T — X is a function whose domain is 7 and whose values are
nonempty subsets of X. A function f: T — X is called a selector for F if f(1) € F(1)
for each t € T. The set {(t, x) € T X X: x € F(1)} is denoted by Gr(F) and is
called the graph of F. If X is a metric space and J is a o-field on T, we say that Fis
S -measurable if the set {(t € T: F(1) n V # ) € T for every open set V in X. If
M is a subset of T X X, we say that C C M uniformizes M if sections of C are at
most a singleton and [1,(C) = I M).

Let X, Y be topological spaces. We say that a function f: X — Y is gpen (resp.
closed) if for every open (resp. closed) set W in X, f(W) is open (resp. closed) in the
range of f.

The rest of our terminology is from [6].

We now state some known results without proof which will be frequently used in
the sequel.

LemMa 2.1 ([2]). Let T be a Polish space and S a countably generated sub-o-field
of By. Let A € B be a union of G-atoms. Then A € T.

LEMMA 2.2. Let T, X be Polish spaces and S a countably generated sub-o-field of
B, Suppose G is a subset of T X X such that G € § @ By and G' is a Gy in X for
every t € T. Then for every closed subset A of X theset (t € T: A C G'}) € 9.

PrOOF. Let Y be a metric compactification of X. By a well-known result of
Alexandrov and Hausdorff, X is a G, in Y. Consequently, G € 9 ® B, and G' is
a Gyin Y foreachr € 7. Let A C X be closed. Then it is easily verified that

(treT:ACG'}Y=T\I(T X 4) n ((T X Y)\ G)).

By a result of Arsenin and Kunugui (1] (sec also [13]) it follows that the set {1 € T:
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A C G') € B,. Further, this set is a union of J-atoms. The result now follows
from Lemma 2.1.

We now state a very uscful result, which is proved in [15], for G;,-valued
multifunctions.

LemMa 2.3. Let T. X be Polish spaces and § a countably generated sub-o-field of
B,. Let GEST ® By and G' be a Gy in X for each t € T. Then there exist sets
G, €9 ® By such that G, is openin X for t € Tandn > land G= N =, G,.

In the rest of the paper. T, X will denote arbitrary Polish spaces and 5 a countably
generated sub-o-field of By. X will be given a complete metric such that diam(X) <
1. {V,: n > 1} will be a base for the topology of X such that V, = X. F: T — X will
denote a multifunction such that F is 5 -measurable, G(F) € § @ B, and F(1)is a
Gy in X for each t € T. G will denote the graph of F and G,, n > 1, will be a
nonincreasing sequence of sets in § ® B, such that G! is open for t € Tand n > |
and G = N 7., G,. The existence of such a sequence of sets is ensured by Lemma
23.

3. A representation theorem.

LEMMA 3.1. Let X be compact. Then for each t € T, there is a system {n): s € S
of positive integers such that for s € S,k > 0,andt € T,

(i) the map ¢ — n/’, defined on T, is 9 -measurable,

(ii) diam(¥,,) < 27%,

(i) ¥, C Giar N Voyum > 1,

G NV, *2,

WG cVv,,

WG NV, C Uz V..

ProoF. For each ¢ € T, we define n/, s € S, by induction on |s|. We define
n! =1, t € T. The above conditions are clearly satisfied for s = e. Suppose n/,
t € T, are defined satisfying (i)~(vi) for every s € U ,, S,, for some k > 0. Fix
an s € S,. We define n,,,, t € T, m € N, by induction on m. We first make a
simple observation. Let W C X be closed and t € T. Then

WCGl, NV, (3IeEN)(n=1and W C G, nV)

By the induction hypothesis and Lemma 2.2, it follows that the set

{remmwcGl,nVv,)ed.
Form > 1, let
T2 = & if diam(¥,,) » 2-%*Y;
={teTG'nV,#8,V,cG.nVy and
(VI < m) (diam(¥}) <274 = (6" N ¥, = Bor ¥, € G}y 1 V)
if diam{V,)) < 27+

As F is T-measurable, by the above observation, it follows that the sets T.%, m > 1,
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belong to F. Also, these are pairwise disjoint and 7 = U 2_, TO. We define

n!, = m if t € TJ. Clearly, the map ¢ — n/, is J-measurable. Suppose for some

p € N, maps ! - n), i < p, have been defined to be 9 -measurable. For m > 1, let
T2 = @ ifdiam(¥,) > 274+ ),
={teTin,<m G NV, *2V,C Gl NV, and
v <m)(diam(¥) < 27¢*V = (n, > lorG' N ¥, = 2
or ¥, 2 Gy 0 V)
if diam(¥,) < 2%+,

It is easily checked that the sets 75, m > 1, belong to 9 and are pairwise disjoint.
We define

o =m ift €TE,
o
=n, ireT\U T2
m=1

The definition of a/, s € S, t € T, is complete. That the conditions (i)—(v) are
satisfied follows immediately from the definitions of n/, s € S, ¢ € T. To check (vi)
note that G' N V,: € G,y N V. and G{,, N V,, is open.

THEOREM 3.2. There is a map [ T X = — X such that for each t € T, f(t, ) isa
continuous, open map from Z onto F(1) and for each o € X, f(-, o) is §-measurable.

ProoF. Without loss of generality, we assume that X is a compact metric space.
For each r € T, we get a system {n: s € S} of positive integers satisfying
conditions (i)~(vi) of Lemma 3.1.

Let f(¢, o) be the unique point of N, l7,¢|‘, t € T, o € Z. By conditions (iii)-(vi)
of Lemma 3.1, f(¢, Z) = F(t), 1 € T. By standard arguments we show that for each
t € T, f(1, -) is continuous and open. Let U C X be open, 0 € Zand r € T. Then

fiLoyeUes N Vy cU
k

=@k>1)@3@!>1)(n) =/and ¥, c U).
Therefore,
Gt wy=U Ufrern,=1)e9,

where the inner union is taken over all / such that l7, = U and the outer union is
over all k. It follows that f(-, o) is 9 -measurable for each ¢ € Z.

COROLLARY |. F admits a I -measurable selector.

COROLLARY 2. There exist T-measurable selectors f,, fo, . . . for F such that for
each t € T, ([ (): n > 1} is dense in F(t).

PROOF. Let o', 0% ... be a countable dense set in 3. Then, for each 71 € T,
{f(t,0"): n > 1} is dense in F(1). Put f, = f(-,6™), n > 1.
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REMARK 1. In [16], it is proved that Theorem 3.2 remains valid if the condition
“f{t, *) is open"” is replaced by “f(¢, -) is closed™.

REMARK 2. Let Y be a Polish space and 4: T X Y — X be a map such that for
each t € T, h(s, -) is continuous and open and for each y € Y, A(-,») is T
measurable. Define a multifunction #: T— X by H(t)= k{1, Y), t €ET. By a
result of Hausdorff [3), H(¢) is a G in X for each t € T. Let {y,:n > I} bea
countable dense set in Y. For n > 1, define f,: T — X by f,(£) = 6,y t € T. Let
¥V C X be open. Then

(teT:H)n V=)= (V).
n>1

It follows that the multifunction H is J-measurable. The question now arises: Is
Gi(H)E T ® B,? We do not know the answer. In {16), it is proved that the
answer to this question is ‘yes’ if the condition *“A(s, +) is open™ is replaced by
“h(t, -) is closed™.

4. Multifunctions of Souslin type.

DEerFINITION. Let (L, £) be a measurable space and Z a metric space. A multi-
function H: L — Z is said to be of Souslin type if there is a Polish space P, a
continuous map B: P — Z and a £-measurable, closed-valued multifunction W:
L — P such that H(r) = B(W(()), foreachr € L.

REMARK 1. Our definition of multifunctions of Souslin type is slightly different
from the one given in [8].

REMARK 2. By a representation theorem for closed valued multifunctions proved
in (14], we get the following. If (L, £) is a measurable space, Z a metric space and
H: L — Z a multifunction of Souslin type then there is a map h: L X £ — Z such
that for each t € L, h(t, ) is a continuous map from Z onto H(t) and for each o € Z,
h(:, 0) is €-measurable.

Now we prove the main resuit of this section.

THEOREM 4.1. The multifunction F is of Souslin type.

Proor. We first assume that X is a compact, zero-dimensional metric space and
basic open sets ¥, V3, ... are clopen. By Lemma 2.2, the sets 7, = {(t € T:
Vo.CG!},m>1, n>], belong to §. As G/ is open for t€ T and n > |,
Go= U R (T X V) PutP=X XZand B =Il,. Let

-] a0
8= U (T, xV,xZ),
n=l m=|
where 23, = {0 €Z: 0, =m), n > 1, m > |. Define W: T— P by W(1) = B,
t €T, so that W(1) = N U(V,, X Z4), where the inner union is taken over all
m > | such that 7 € 7, and the outer intersection is over all n. For each n > 1,
{Vm X Z,: m > 1} is a discrete family of closed sets in P. It follows that the inner
union is closed in P for each n. Therefore, W(¢) is closed in P for each ¢ € T Also,
itis casily checked that (W (1)) = F(r),1 € T.
We now check that W is J-measurable. Let iEN and s€ S, k> 0. It is
enough to show that
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NP*P(TX V,XE)NB)ET.
Now,

(TxV,xZ)nB= ) U (Tw X(Van V)X (EL,NZ)

a>k m>1

- (I(:jl(q,lx(V,,n V,)xix))

a>k m>\

= (,ri (7, x P))

n(ﬁ‘k UI(TM.X (V,.,n vin ﬁ V,,)X(Z:.nz,)))-

0 (N U (T x 0 v x (35,0 3,)

j=1
Hence,
NI*?((T X ¥V, X 2) N B)

Ao

n (rl H.(T“X(V”'n V,n ﬁ V,,) X(Z;’,,nz,))”

= TXP
=

= ff] T},Inrl;”( ﬂk UI(TM.X (V,,n v,n ff] V,,)))
k k

=N r,,lnn;”((rx(v,.n N V,,I))n(ﬂ U (7, x V.,.)))
J=1 J=1 A>k m>1

=N nﬁnn;”((Tx(V,n (51 V!,))nc).
i=1 =1

As F is 9-measurable, it follows that W is F-measurable.

Now, let X be a zero-dimensional Polish space. Let Y be a zero-dimensional
compact metric space containing a homeomorph of X. We consider F as a
multifunction with values subsets of Y. By the previous case, we get a Polish space
Q, a continuous map g: Q — Y and a F-measurable, closed set-valued multifunc-
tion H: T— Q such that F(r) = g(H(0)), t € T. Put P =g '(X) and B8 the
restriction of g 1o P. As X is a G in Y, P is Polish. Note that H(¢) C P,t € T. Put
W=H.

Finally, let X be an arbitrary Polish space. Let g: £ — X be a continuous, open
and onto map. Define a multifunction H: T— = by H() = g (F(n), t € T.
Clearly, H(f)is a G, in Z foreach ¢t € T. Let U C = be open, then

{(t€ T: HY) N U@} = {1 € T: F() n g(U) + B}.
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As F is 9 -measurable and g open, H is §-measurable. To show Gr(H) € T ® D,
we define h: T X 2~ T X X by

h(t,0) = (1,g(0)), t(ET,0€EX.

Then 4 is continuous and Gr(H) = A7(G) so that Gr(H) is Borel in T X £. Note
that whenever ¢ and ¢ belong to the same F-atoms, G' = G and consequently,
(Gr(H)) = (Gr(H))". This implies that Gr(H) is a union of § ® B;-atoms.
Therefore, by Lemma 2.1, Gr(H) € 9§ @ B;. By the previous case, we get a Polish
space P, a closed set-valued, J-measurable multifunction W: T — P and a con-
tinuous map f: P — £ such that H(¢) = f(W(1)), 1 € T. Put 8 = g o f. The desired
properties are easy to verify.

REMARK. A close examination of the various cases in the above proof reveals that
the map B8: P — X is obtained to be continuous, open and onto.

5. Decomposition of Gr(F) into graphs of measurable selectors. In this section, X
and F(1), + € T, are all assumed to be uncountable. We prove

THEOREM 5.1. If for every t € T, F(1) is dense-in-itself then there is a T @ B -
measurable map f: T X X — X such that for each t € T, f(1, -) is a Borel isomor-
phism of X onto F(1).

This result is analogous to a result of Mauldin [11] and we follow some of his
ideas. We first show by an example that the condition “F() is dense in itself”
cannot be dropped from Theorem 5.1.

EXAMPLE. Let X be an uncountable Polish space containing a countable, dense,
open set U. (Union of the Cantor set and the mid-points of the removed intervals is
such a Polish space.) Let 7=2, 9 = B, andlet Y = X \ U. Let £ be a G, set in
3 x Y such that [T;(£) = £ and E does not admit a Borel uniformization [9, p.
265). Let G: Y — Y be a continuous, onto map such that £7'(») is uncountable for
cach y € Y. Let B=((t,y) ET X Y: (¢,8(y)) € E}. Then B is a G, set in
3 X Y such that every section of B is uncountable and B does not admit a Borel
uniformization. Let F: T — X be defined by F(f) = B' U U, t € T. Itis clear that
F(1)is a Gy in X for each t € T and Gr(F) € T ® By. As U is dense in X, F is
.measurable. If F satisfies the conclusions of Theorem 5.1, by a result of Mauldin
(11}, there is a Borel set M C Gr(F) such that for cach t € T, M’ is nonempty and
perfect. Let H = M \(T x U) C B. The sections of H are nonempty and com-
pact so that H, and therefore, B admits a Borel uniformization.

LeMMa 5.2. Let X be compact. Then for each t € T, there is a system (nj: d € D)
of positive integers such that ford € Dy, k > 0,andt € T,

(i) the map ¢ —» n} is 5 -measurable,

(i) diam(V,) < 27%, _ _

(ii)d' € Dy, d#*d' = VynV, =0,

ANV, +2,

WMV CGanNVy i=00ri=1

Proor. We use induction on |d|. Let n] = 1 for all ¢. (i)—(v) are satisfied for
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d = e. Suppose for some k > O, n; is defined for all d € U ,¢, D, and for all
{ € T satisfying (i)-(v). Fixad € D,. Put
T"‘={IET:n;=m), m> 1.

By the induction hypothesis, the sets 77, m > 1, belong to 9, are pairwise disjoint
and T= U .,, T”. Now, for any pair (4, v) of positive integers define 777,
m > 1, as follows. _ _

If diam(¥,) < 2*D, diam(V,) <27%*", VNV, =@, V. CV,, V,cv,
then
Tn={teT™V,C GV, CGL, V.0 Ft)=Dand ¥V, n F(r) = B);

=& otherwise.
As Fis J-measurable, by Lemma 2.2, T) € 9. Also T™ = U ., T2

Leta; N = N X N be a one-one, onto function.
Put

sm= T, ifi=1,

Top\ U TR, ifi> L

Jj<i

The sets S, i > |, belong to J, are pairwise disjoint and T™ = U ,,, 5. We
define
njp = (a(j
.:o ( (J‘))'} if ¢+ € §;" for any m.
ny = (a(f):

This completes the definition of {nj: d € D, ,,}, t € T. It is easy to check that
(i)~(v) are satisfied.

LeMMA 5.3. There is a map g: T X C — X such that for each t € T, g(1, -) is a
homeomorphism from C into F(t) and for each ¢ € C, g(-, €) is T-measurable.

ProoF. Without loss of generality, we assume that X is a compact metric space.
For each 1 € T, we get a system {nj: d € D} of positive integers satisfying (i)-(v)
of Lemma 5.2. Let g(s, €) be the unique point in M, 17,.4‘. te€T, e C. By
standard arguments, we show that for each ¢ € T, g(¢, -) is a homeomorphism
defined on C and by (v), it is into F(1). Let t € T, e € C and U C X be open.
Then

g(tbe)€E Ues M VM.QU
&

@@k > ')('7«1. cv)
=@k>1D)@E!>1)(V,cU)(nl=1)

gt =U U((reTn=1))ed,
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where the inner union is taken over all / such that ¥, C U and the outer union is
over all k. It follows that g(-, €) is J-measurable for every e € C.

PROOF OF THEOREM 5.1. By Lemma 5.3, we get a map g: T X C — X such that
for each l € T, g(t, -) is a homeomorphism from C into F(¢) and for all e € C,
g(-. €) is T-measurable. In particular, g is T ® B,-measurable [6, p. 378). As X
and C are Borel isomorphic we get a § ® B, -measurable map h: T X X -» X
such that for each ¢t € T, A(s, +) is a Borel isomorphism from X into F(r). Let k:
T X X = T X X be defined by

k(t, x) = (1, h(¢, x)), teT,x € X,
and let
B={(t,x) €T X X: x € h(1, X)).

Then, B C G and as k is one-one, Borel, B is Borel in T x X. By Lemma 2.1,
BET®B,. Also, k: (T X X, T ® By) (T X X, T ® B,) is 2 measurable
map such that for each r € T, k(4, -) is a Borel isomorphism from X into
{1} X F(1). Now, we do a Schroeder-Bernstein type argument as done by Mauldin
{11) and get a measurable map a: (7 X X, T ® B,) (T X X, T ® B,) such
that for each ¢+ € T, a(s, +) is a Borel isomorphism from X omto {r} X F(f). Put
f= Iy ¢ a.

COROLLARY 1. Let M C T X X be a Borel set such that for every t € TI (M), M’
is dense in itself, and both a K, and a Gy set in X. Then M is a union of 2* disjoint
Borel uniformizations.

Under the hypothesis of the above corollary, Larman [7] proved that M contains
2% disjoint Borel uniformizations. The problem of the existence of 2* disjoint Borel
uniformizations of M when its sections are not assumed to be dense in itself remains
open.
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