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It appears that Professor Berkson has revived an old debate about the MLE at
least partly because of the recent interest in the results of Fisher and Rao on
second order efficiency. In view of this it may be worth recording here what second
order efficiency does and does not mean for Berkson's famous example from
bioassay.

Adopting the notations of Ghosh and Subramanyam (1974 Section 3) (but
writing £ for the rather pedantic £Y) one may write

E(T,) = a + b{a)/n + o(n™")
E(&,) = a + b(a)/n + o(n”")
where T, is the minimum logit chi-square estimate, a, is the MLE,
b(a) = Em(1 — w)(2m, - 1)/1* - Sk(2w, — 1)/21
by(a) = a1 — m)(2m - 1)/21%
The corrected MLE may be taken to be a truncated version of

a, = & + (b(a,) — b(a,)}/n.

To truncate &, one must choose some 4 > 0, such that the true @ may be assumed
10 lie in (—d, d) and then replace a, by 4 or —d according as it exceeds d or falls
below —d. (The asymptotic theory is insensitive to the choice of d). Let the
estimate 7, be truncated in a similar way. Then the mean squared error of the
truncated &, Is strictly smaller than that of the truncated T, if terms of o(n™?) are
neglected. This result remains true for quite general loss functions, see Ghosh,
Sinha and Wicand (1977). As cxplained in Ghosh and Subramanyam (1974,
Section 4) the reason for this is that the MLE approxi Bayes esti better
than its common rivals. When Subramanyam and 1 started studying second order
properties of the MLE we were looking for a Bayes estimate which would be better
than the MLE. It came as a surprise to us that this is impossible (up to o(n~?) in
the mean squared error).
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A general result of this sort should make one prefer the MLE to the other BAN
estimates commonly used as altematives provided two rather strong conditions
hold. First, the assumption about the form of the likelihood function is correct.
Secondly, the terms of o(n~2) are negligible for actual samples. It seems to me the
first assumption is the more serious onc and consequently the main criticism of the
MLE should be based on its lack of robustness.

If Berkson’s object is to provoke us into a critical reappraisal of the MLE, then |
am in complete agreement with him. However, if he means all that he says in his
provocalive title then we must part ways a¢ some point. Minimum chi-square
estimates may be all right in certain forms of data analysis when very little is
known about the data. In all other cases the likelihood is too useful a pant of the
data to be ignored. We should be looking for an estimate which makes use of the
likelihood but in a more robust way than the MLE.

I will end by making a few comments on Professor Berkson's examples.

Consider first the bicassay example treated above. The following three state-
ments are easily verified. If all the subjects are killed, i.e., £ p,” = k, the MLE is co.
If all the subjects survive, i.c., £p” = 0, the MLE is oo. In all other cases, i.e., if
0 < Tp” <k, the MLE is the unique solution of the likelihood equation. Thus, the
MLE is a oue-one function of the minimal sufficient statistic X p”, contrary 10 a
claim of Berkson. On the other hand, the definition of the minimum logit chi-
square estimate becomes ambiguous if p” = 0 or | for any /.

In his first example Professor Berkson wants an estimate to be equal to the
estimated parameler if all the observations are equal to their expectations. I shal)
call it Berkson consistency (with respect to the Y's) to distinguish it from Fisher
consistency wbich requires equality of estimate and parameter when the sample
distribution function coincides with the true distribution function. (Thus Fisher
consisiency is Berkson consistency with respect to the sample distribution func-
tion.) I will now give an example where no estimate which is admissible with
respect to Lthe squared error loss can be Berkson consistent with respect to Y.

Let Y be a single observation from N(#, 1) and assume @ < 8 < b where a < b
are known constants. To be Berkson consistent an estimate 7(Y) must equal Y if
a < Y < b. A standard argument involving analyticity of Bayes estimates then
shows 7 cannot be proper Bayes and bence T is inadmissible. Surely in this
example Berkson consistency (with respect 1o Y) should be repugnant to Bayesians
as well an Neyman-Pearsonians.

Here is another example which is instructive in a different way. Consider a single
observation Y from N(u, o?) and assume that p = o2 In this case ji is not Berkson
consistent with respect to Y but it is Berkson consistent with respect to ¥? which is
minimal sulficient. In the example given by Berkson sorething of this sort
happens. If at each dose T Y as well as £Y? equals its expected value, then the
MLE would recover the true values. Of course it is impossible to get such data if
one has only one observation for each dose. However, even for Berkson's example
the match between y? and ¥? is no worse than that between y? and V2.
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