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ABSTRACT. In this paper we prove, under suitable conditions, several
representation theorems for invariant measures arising out of the action of a
family of measurable i ions Jon a ble space (X,&). Our
results unify and extead results of Farrell and Varadarajan on the represen-
tation of invariant measures.

1. Introduction. There is considerable literature on the problem of represent-
ing invariant measures as mixtures or integral averages of ergodic measures.
One of the earliest contributions to this field was made by Kryloff and
Bogoliouboff [9], who proved the representability of invariant measures arising
out of the action of a group of homeomorphisms on a compact metric space.
Subsequently, several authors, notably Farrell [4] and Varadarajan [16),
extended the result of Kryloff and Bogoliouboff to more general situations.
(For a rather extensive bibliography on this subject, the reader is referred to
[12] and [16].)

We deal in this paper with the representation problem mentioned above.
The point of departure of our efforts is the treatment of this problem by
Farrell [4]. The situations considered by Farrell may be loosely described as
follows. X is a Polish space, or more generally, an analytic subset of a Polish
space, & is the Borel o-field of X and ¥ is a nonempty family of Borel
measurable transformations on X into X. Under suitable restrictions on 9 of a
topological and group-theoretic kind, Farrell proves the representability of
invariant measures. The aim of this article is to unify these results and to
extend them to the case where X is a universally measurable separable metric
space. This is done by eliminating the topological ingredients of Farrell’s
treatment and replacing them by conditions of a purely measure-theoretic
kind.

It should be mentioned that in one respect our methods differ from those of
Farrell. In checking that there are enough extreme points in the convex set of
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invariant measures for representing invariant measures, Farrell (and also
Varadarajan) has to imbed the given system (X,&,9) Borel isomorphically
into a system consisting of transformations acting continuously on a compact
metric space (a precise formulation of this is Theorem 3.2 in [16]) and then
appeal to the Krein-Milman theorem. But, as remarked by Varadarajan (16,
p- 199], such an imbedding is not possible when the basic space is not
analytic. We get around this difficulty by using regular conditional probabili-
ties given a suitable countably generated sub-o-field of the almost invariant
o-field; the regular conditional probabilities provide us with all the extreme
points needed for representing invariant measures. However, like Farrell, we
too exploit the sufficiency of the almost invariant o¢-field for the family of
invariant measures in all the situations where we are able to establish the
representability of invariant measures. On the whole our methods seem to be
-simpler and more direct than those of Farrell.

The paper is organized as follows. §2 introduces the basic definitions and
notation. In §3 we record some preliminary results which are needed in the
proofs of the representation theorems. §4 contains the main representation
theorem and some of its consequences. In §5 representation theorems are
proved for nonseparable families of measurable transformations. In §6 we give
examples which help elucidate various aspects of the theory.

2. Basic definitions and notation. Let (X, € be a measurable space. A
transformation T: X — X is said to be measurable if for each 4 € &, T"(A)
€ @. Let J be a nonempty family of measurable transformations on X. A
measure will always mean a countably additive probability measure. A
measure g on € is said to be invariant with respect to ¥ if for each
A € @and T € J, u(d) = p(T~'(4)). We denote the set of all measures
invariant with respect to § by 9. Plainly, %; is a convex set and the set of
extreme points of %y is denoted by ex %;. A set E € & is said to be null with
respect to Tif p(E) = O for every u € %5. The o-ideal of null sets is denoted
by g. A set E € @ is invariant for Tif E= T~'(E) forevery T€ 5. I
p € 9y, we say that E is p-almost invariant if f(E A T~'(E)) = 0 for every
T € 7. Say that E € @ is almost invariant for J if E is p-almost invariant for
every p € %y, ie, if E A T™YE) € Hg for every T € 9. The collection of
invariant, p-almost invariant and amost invariant sets are denoted by %,
94 and J;, respectively. These collections are easily seen to be o-fields and will
be called, respectively, the invariant, p-almost invariant and almost invariant o-
fields. A measure p € 9y is said to be ergodic if the restriction p|%; of  to (S
is 0-1 valued. [Another definition of an ergodic measure would be to require
that the invariant measure be 0-1 valued on the invariant o-field 95 In general,
this definition is less stringent than the one we have adopted, as Example 1 in
§6 shows. In case 9y is sufficient for %, the two definitions coincide (see



INTEGRAL REPRESENTATIONS OF INVARIANT MEASURBS 211

Lemma 5).] Denote the set of ergodic measures by %5 . Say that the family &
is separable if there is a countable set %, C F such that whenever a measure is
invarjant with respect to Jgs it is invariant with respect to 3, i.e.,, B = Py, The
notion of separability introduced above will help us in formulating a general
representation theorem for invariant measures which subsumes several known
results.

In order to define the representability of invariant measures, we equip the
set ex 3y with a o-field Z4: Zq is the smallest o-field of subsets of ex %; which
makes the maps p — p(E), E € €, measurable. If p € ‘3’5, say that pis
representable if there is a measure m on Zq such that p(E) = “9 WE)dm(»)
for every E € &. In this case m is called a representing measure for I

We say that Jis a group acting on (X, @ if T is a2 nonempty family of
measurable transformations on X to X such that (a) ¥ is a group under
composition, and (b) the identity transformation on X is the identity of the .
group 7. Say that T'is a group acting measurably on (X, &) if T is a group acting
on (X, € such that J is a topological group and the mapping (T,x)
= T(x) is (3 X &, &)-measurable, where B is the Baire o-field of 9. Recall that
the Baire o-field of J is the o-field generated by the zero sets of . In case Fis
metrizable, the Baire o-field is just the Borel o-field; and if 9 is compact, the
Baire o-field is the o-field generated by compact Gj sets. Analogously, one
defines the notion of a semigroup acting on (X, ®).

A measure p on a measurable space (X, @) is perfect if for every @
measurable function f into the reals, there is a Borel subset B of the real line
such that B C f(X) and u(f~'(B)) = 1. A measurable space (X, @) is said to
be a perfect space if (i) & contains singletons, (ii) € is countably generated, and
(ili) every measure on @ is perfect. A separable metric space X is said to be
universally measurable if X is measurable with respect to every measure on the
Borel subsets of the completion of X, or equivalently, if X is measurable with
respect to every measure on the Borel subsets of any Polish space in which X
can be homeomorphically imbedded. It is known that if X is a universally
measurable separable metric space and @ is the Borel o-field of X, then (X, &)
is a perfect space; and, conversely, if (X, @) is a perfect space, then X can be
metrized so that X is a universally measurable separable metric space and € is
its Borel o-field. Our results can therefore be formulated either in terms of
perfect spaces or universally measurable separable metric spaces. We have
chosen the former for our main results because of its measure-theoretic
flavour. Marczewski [11] and Ryll-Nardzewski [15] are good references for
information on perfect measures and related matters.

Let @ be a family of measures on a measurable space (X, &) and let Cbe a
sub-o-field of & Say that Cis sufficient for P if for every E € &, there is a real-
valued G-measurable function f on X such that u(4 N E) = [, fdp for every
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A € Cand p € ¥. We say that C is separating for @ if p, p, € 9 and p|@
= 1, |@ imply py = p,. It is easy to see that if € is sufficient for &, then Cis
separating for 9.

3. Auxillary results. Throughout this section (X, &) will be a fixed measurable
space and 9 a nonempty family of measurable transformations on X to X.
There will be no retrictions on the measurable space (X, &) and any
assumptions made regarding J will be explicitly stated.

LemMA 1. Suppose that 3y is sufficient for 95. Then

(i) ex 9 = 94,

(ii) the following conditions are equivalent:

(a) every p € Fa is representable and has a unique repr

(b) for every A€ 55 andp € B such that w(A) > 0 there Lv ’

€ ex Ty such that W(4) =

The above result is due to Farrell and the reader is referred to [4] for a
proof. It should be noted that ex 35 C ®f always (cf., for example, [4, Lemma
1]); Example 4 in §6 shows that the reverse inclusion is, in general, false. In
all the situations where we are able to prove the representability of invariant
measures, it turns out that the almost invariant o-field is sufficient for F; so
that the ergodic measures are just the extreme points of %;. (Warning. We are
not claiming here that a necessary condition for the representability of
invariant measures is the sufficiency of %; for y; indeed, it is not, as Example
5 shows.) Jacob Feldman has proved the following measure-theoretic charac-
terization of extreme points of $g: for p € %y, p € ex Fif and only if pl9f is
0-1 valued. The details are to be found in [13, §10). We shall have no occasion
to use this result.

Lemma 1(ii) extends a result of Blum and Hanson [2], who proved the
equivalence of conditions (a) and (b) when J consists of a single bijective and
bimeasurable transformation of X onto X. Plainly, condition (a) always
implies condition (b); in general, the reverse implication is false, as Example
3 shows.

We pow investigate conditions under which the almost invariant o-field is
sufficient for %5. We begin with a result of Jacob Feldman. See [13, $10] for a

proof.

LemMA 2. Suppose g, X are measures on (X, €) such that p € % and A is
absolutely continuous with respect to p. Let f = d)A|dp. Then A € 9y if and only
iffe T =fae [p] forevery T € &,

LemMa 3. If 9, is a subfamily of T such that Sy = By, then Gy e Ji
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Proor. Since %) C Tand %, = Fy, it follows that §; C I . For the reverse
inclusion, let A be a bounded, nonnegative 3; -measurable function on X. Fix
pEIg="9y. If fhdp =0, then fh o Tduy = 0 for every T € 9, so that
ho T = ha.e.[u]for every T € 9. Suppose now that [ hdp = a > 0. Define
a measure A on & by: A(E) = a"J'Ehdp, Ec€@ Ashis %-mcasurable,
hoT=h ae. [u] for every T € 9. Hence, by the ‘if’ part of Lemma 2,
A € 9 and s0 A € %y It follows now from the ‘only if’ part of Lemma 2 that
ho T = ha.e. [u] for every T € ¥. Thus, in any case, h o T = h a.e. ] for
every T € T and any p € 9. Consequently, h is §rmeasurable, which
completes the proof.

LEMMA 4. If T is separable, then 3 is sufficient for %;.

Proor. Let T, be a countable subfamily of T such that % = 9. As G is
countable, it follows by a result of Farrell [4, Theorem 2] that 5% is sufficient
for ‘950 = F5. The present proof is completed by appealing to Lemma 3.

One may wonder if the separability of ¥ implies the sufficiency of the
invariant o-field 4 for %;. This is not so. Indeed, Farrell has an example of a
semigroup, consisting of two elements and acting on a measurable space such
that the invariant o-field is not sufficient for the family of invariant measures.
See [4, p. 452). However, Farrell has also shown that for a countable group
acting on a measurable space the invariant o-field is sufficient [4, Theorem 3].
Example 1 shows that this result cannot be extended to separable groups
acting measurably on a measurable space.

The sufficiency of 9g for @5 does imply the sufficiency of 9_5 More precisely,
we have

LemMa 5. If b5 is sufficient for %5, then % = o(3g L 9g), where, for any family
& of subsets of X, o(8) is the o-field generated by &. Consequently, if 3 is sufficient
for By, then so is Tg.

PrOOF. Plainly, o(Sy U Mg) C 5. For the reverse inclusion, let k be a
bounded, nonnegative 9_5—measurable function on X. Since 4 is sufficient for
9, there is a nonnegative Sy-measurable function h* on X such that

(1) Lhdp.=L K dp

forall A € 9yand pp € F5. Now fixp € Fy. If S hdp = 0, then f h*du = 0,
50 that & = A* a.. [i]. Suppose, then, that [ hdy = a > 0. Define A, (E)
= a7 f; hdu and ,(E) = o' fg K" du for E € Q. Since p € 9y, and since
forevery T € 9, ho T = hae.[s]and 5* o T = h*, it follows by the ‘if’ part
of Lemma 2 that A}, A; € Fy. But from (1) we have A} = A, on 4. As 4y is
separating for @y, it follows that Ay = A, on & Consequently, & = 4* a.e. [p].
Thus, in any case, h = h* a.e. [u] for all p € 9. Hence h is o(dg U Iq)-
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measurable, which completes the proof of the first assertion of the lemma. The
second assertion follows trivially from the first.

Problems similar to those considered in Lemmas 3, 4 and § are discussed in
Basu [1]. However, for Basu, the relevant family of measures is most often a
proper subfamily of the family of invariant measures. We do not know if
Lemma 5 holds in Basu’s setup.

4. Main representation theorem. Towards the proof of the main representa-
tion theorem we first establish two lemmas. These lemmas essentially show
that regular conditional probabilities give us enough ergodic measures for
representing invariant measures.

For the lemmas, we assume that € is a countably generated o-field on X, 9
is a separable family of measurable transformations on (X, €) and g is a fixed
measure in 9. Further, let Cbe a countably generated sub-o-field of %; and let
QO(x, E) be a p-regular conditional probability on & given G, i.e., (i) for fixed
E € &, Q(-, E) is a Gmeasurable function on X, (ii) for fixed x € X, Q(x, )
is a measure on @, and (iii) for every E € @and 4 € @,

WA N E) = [, 0(x,E)du(x).

LeMMA 6. Under the above conditions, there is a set X; € C such tha
wX) = 1and Q(x, ) € By for every x € X;.

Proor. Let @, be a countable field which generates & and let F; be
countable subfamily of I such that %; = 9’%. ForE€ @A €CandTE S,
we have

w4 N E) =L QO(x, E)dp(x), and

A 0 T7UE) = [ 00, T7(E)) dul).

Since A € Cand € C &, 4 € Fyso that u(4 A T~1(4)) = 0. It follows that
#A N E)= T A) N T™YE)) = p4 n T7Y(E)).

Consequently,

[, 2 Eyau(x) = [, 00 T (E))dut).
This last equality holds for every 4 € C. It follows that, if Npr={x
€ X: Q(x.E) # Q(x, T™'(E))), then Ng 7 € Cand p(Npp) = 0.

Set X; = X — Ureg, Upca, Ni,r- Recalling that 9 and &, are countable, we
see that X; € Cand u(X;) = 1. We now check that X, works. So let x
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€ X;and T € F. If A = Q(x, -), then, clearly, A = AT 'on &, and, hence,
A =AT"! on @ This is true for any T € Fo» so that O(x, ) € 9y, and so
Q(x, ) € 95. This completes the proof.

LeMMA 7. Under the same conditions as in Lemma 6, there is a set X, € Csuch
that (i) p(X,) = 1, (ii) for each x € Xy and A € @, Q(x,A) = 1,(x), where I,
is the indicator of the set A, and (iii) Q(x, -) € %; for each x € X,.

ProoF. It is well known that, since Cis countably generated and Q(x, E) is
a regular conditional probability given G, there is a set N € € such that
u(N) = 0and Q(x,4) = I,(x) for each x € X — Nand 4 € @; see, for
example, [6, p. 352]. By Lemma 6, there is a set X; € C such that p(X,)
=1land Q(x, ) € Fgforeveryx € X;.Let X, = X; — N,sothat X, € C. It
is now clear that X, satisfies the requirements of the present lemma, which
completes the proof.

Our main result on the representability of invariant measures is

TueoReM 1. Ler (X, &) be a perfect space and let § be a separable family of
measurable transformations on X. Then every invariant measure is representable
and has a unique representing e. Moreover, (ex 9y, 2g) is a perfect space.

ProOF. Since Jis separable, it follows from Lemma 4 that 55 is sufficient for
;. Consequently, as @ is countably generated, there is a countably generated
o-field Csuch that §g = o(C U 9g) 3, Theorem 1],

Now fix p € %y. As p is perfect, there is, according to a result in Jifina [8],
a p-regular conditional probability Q(x, £) on &€ given C. Note that Lemma 7
is now applicable. Fix a set X; € € satisfying the conditions of Lemma 7.

We now claim that Q{x, ) € ex %y for every x € X;. To see this, let
x € X,. Then conditions (ii) and (iii) of Lemma 7 imply that Q(x, -)
€ 9 and Q(x, -)|C is 0-1 valued. Since fy = o(@ U Ng) and Q(x, ) € Fy, it
follows that Q(x, -}|3g is 0-1 valued, so that Q(x, -} € % . As Jg is sufficient for
&, Lemma 1(i) now implies that O(x, -} € ex %;.

The discussion in the preceding paragraph enables us to define a map
@ Xy = ex 9 by o(x) = O(x, +). We first study some properties of this map.
Clearly @ is (G N X;, Zg)-measurable, where € N X, is the trace of € on X,.
On the other hand, if 4 € € N X, then ¢(4) = {» € ex Fy: H{4) = 1}. To
sec this, let 4 € € N X,. Since X, € G, it follows that 4 € €. By condition
(i) of Lemma 7, x € X, implies Q(x,4) = I,(x). Hence, if » € p(4), then »
& ex 9;and v(4) = L. Conversely, suppose » € ex Fy and ¥(4) = L. So »|Cis
0-] valued, and since Cis countably generated, » concentrates on a C-atom, i.c.,
there is a Gatom, say B, such that »(B) = 1. Plainly, B C A.Letx € B. Since
A C X,, it follows that x € X, and so condition (ii) of Lemma 7 implies that

r=Q(x ) on G As », Q(x,) € Fgand o(C U Rg) = I, it follows that
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» = Q(x, ) on &. But % is separating for %y, so» = Q(x, ) on & hence
» = ¢(x) € p(4). Consequently, if 4 € € N X, then ¢(4) € Z,.
To prove the representability of g, let E € €. We then have

WE) = [, O(x, E)dp(x)
= f Y Q(x, E)dp(x) (since p(X;) = 1)
= f“.,! H{E)dm(y) (change of variable theorem)

where m = pp~}. This holds for any E € @ and so p is representable.

Next we show that p has at most one representing measure. Let, then, n be
a representing measure for u. Suppose 4 € € N X;. We have already proved
that p(d) = {v € ex F5: H(4) = 1} and that ¢{4) € 4. We now compute
n(e(A)) as follows:

n(p(4)) = n({p € ex Fg: ¥(A) = 1})

= ﬁveeﬂg:r(,{)_ 1} "(A) d"(l’)

= j; . wA)dn(y) (since, for every » € ex B, W(4) = O or 1)

= p(4).

In particular, n(p(X,)) = u(X,) = 1. Now let H € Z,. Then ¢”'(H) € ¢
N X, and (¢ (H)) = H 0 ¢(X,). Furthermore,

we™ (H)) = n(plp™' (H))) = n(H N (X)) = n(H).

The last equality follows from the fact that n(tp(Xz)? = 1. As H is an arbitrary
set in Zq, we have therefore proved that n = pp™". From this it follows that
any two representing measures for g must be identical.

Let m be the representing measure for p. We show that m is perfect. Let,
then, f be a real-valued Zymeasurable function on ex %;. So f ¢ ¢ is a real-
valued € N X,-measurable function on X,. Since p is perfect, so is u|C. From
this and the facts that X, € Cand u(X;) = 1, it follows that ul@ N X, is
perfect. Hence there is a Borel subset B of the real line such that B
C f(p(Xy)) and u(e~' (f71(B))) = 1. Since m = pp™!,

m(f~'(B)) = we~ (S (B))).
Thus m(f~'(B)) = 1 and B < f(ex %;), which proves that m is perfect.
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Since the map that sends each invariant measure to its representing measure
sets up a one-one correspondence between invariant measures and measures
on Zg, the arguments of the previous paragraph show that every measure on
Zq is perfect. That Zg is countably generated and contains singletons follows
by routine arguments from the fact that @ is countably generated; see, for
instance, [5]. We have thus established that (ex 95,Z4) is a perfect space,
which terminates the proof of Theorem 1.

REMARK 1. The proof of the existence and uniqueness of the representing
measure for an invariant measure given above can be considerably shortened
by invoking Lemma 1(ii). Since in Theorem 1 J; is sufficient for 9, so, in view
of Lemma 1(ii), it suffices to check condition (b) of Lemma 1(ii) in order to
prove the existence and uniqueness of the representing measure. To do this,
letp € %, A € Igsuch that p(4) > 0. With the same notation as in the proof
above, we have p(4 N X;) > 0 because p(X;) = 1. As % = o(C U %Ng),
there is a set 4’ € € such that AAA’ € YNy, so that p(AAAY) = 0. Hence
#(4’ N X) > 0. Thus A’ N X, is a nonempty set in C. Let x € 4’ N X, and
»p=Q(x, *). Then » Eex Py and v(4) = 1. As AAA’ € Ng, we have
»(4) = 1. We have presented a longer proof to keep the exposition as
self-contained as possible and also because it gives more insight into the
representation problem.

ReMARK 2. The condition in Theorem 1 requiring that every measure on €
be perfect (acutally, for the proof of Theorem 1, we only need that every
invariant measure on & be perfect) cannot be relaxed in general. Indeed,
Varadarajan has given an example of a measurable space (X, @), where X is a
separable metric space and & is the Borel o-field of X, and a countable group
9 acting on (X, @) such that there are uncountably many invariant measures
but no ergodic measures, so that no invariant measure is representable; see
(16, p. 217]. On the other hand, dropping the condition that Jis separable from
Theorem | may lead to the same unpleasant consequences even when the
space (X, @) is a standard Borel space, and so, a fortiori, a perfect space; see
Example 2 in §6.

ReMARK 3. Theorem [ constitutes a generalization of Theorem 5 in Farrell
[4] in two directions: first, Farrell's assumption that the family of measurable
transformations be countable is weakened, and second, the validity of Farrell’s
theorem is extended from Polish spaces to universally measurable separable
metric spaces. Though the first direction of generalization is a trivial one, the
second is not, for reasons mentioned in the Introduction. However, even the
replacement of the condition that the family of transformations be countable
by the weaker condition that it be separable has its uses for it permits us to
deduce several representation theorems from Theorem 1 without much extra
effort.
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‘We proceed now to do just that. First we formulate a result which gives us
interesting examples of separable families of measurable transformations.

PROPOSITION 1. Let X be a separable metric space and let & be the Borel o-field
of X. IfTis

(a) a family of measurable transformations on (X,&) such that there is a
countable family 3y C T which is dense in T under pointwise convergence, or

(b) a locally compact second countable group acting measurably on (X, &),
then J is separable.

We omit the proof, which is contained in the proofs of Corollaries 3 and 4
in Farrell [4]. It should be noted that Farrell assumes that X is a Polish space,
but his proofs of the separability of T in fact go through for separable metric
X without change.

Combining Theorem 1 with Proposition 1, we get

COROLLARY 1. Let X be a universally measurable separable metric space and
let @ be the Borel o-field of X. If T is as in () or (b) of Proposition 1, then every
invariant measure is representable and has a unique representing measure.

This result includes Corollaries 3 and 4 of Farrell [4] and extends their
validity from Polish spaces to universally measurable separable metric spaces.
Also our result includes the main representation theorem of Varadarajan [16,
Theorems 5.3 and 5.4] and extends its validity from analytic sets to universally
measurable separable metric spaces.

The classical result of Kryloff and Bogoliouboff, quoted in the Introduction,
also falls out of Theorem 1. Indeed, if F'is a family of continuous transforma-
tions on a compact metric space X to X, then it is not difficult to see that there
is a countable family 9, C T such that %, is dense in J under pointwise
convergence (in fact, under uniform convergence), so0, by Proposition 1, Jis
separable. Hence Theorem 1 applies.

We conclude this section by deducing de Finetti’s theorem on the represen-
tation of symmetric measures in a rather general context. Let (X, &) be a
measurable space and let N be the set of positive integers. Let X = ,\Q,N and
denote by @ the product o-field € X € X ---. Suppose T is the group of
measurable transformations on X which permute the coordinates of elements
of X and 9, is the subgroup of ¥ consisting of transformations on X which
permute finitely many coordinates of elements of X. By a known result [7,
Theorem 3.2], % = 9y, so that T is separable. Elements of % are called
symmetric measures. Hewitt and Savage have proved that ex % is just the set
of product measures on € having identical components [7, Theorem 5.3). If,
moreover, (X, &) is a perfect space, then, according to a result of Marczewski
[11), so is (X, €). Therefore, with this assumption on (Xg,&,), Theorem |
applies to (X, &, 9) to yield
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COROLLARY 2. Let (X, @,) be a perfect space. Suppose X = XON and & is the
product o-field on X, all of whose components are @,. Then every symmetric
measure on & is a mixture of product measures on & with identical components and
the representing measure is unique.

In the terminology of Hewitt and Savage [7], we have proved above that if
(Xp, &) is a perfect space, then @; is presentable. It is easy to construct
examples of perfect spaces which do not satisfy the hypotheses of the main
representation theorem of Hewitt and Savage (7, Theorem 7.4]; consequently,
our result cannot be deduced from theirs. On the other hand, nor can the
Hewitt-Savage result be obtained from our Corollary 2. When the basic o-field
@y is countably generated, the above version of de Finetti's theorem is the
most general known to the author. However, we do not know if the perfectness
of the space (X, &) has anything to do with the presentability of @, though,
of course, our methods do use the perfectness of (X;, ). The presentability
of @ for countably generated @, seems to be an open problem.

5. The nonseparable case. We now turn our attention to the representation
problem for invariant measures arising from the action of a not necessarily
separable family of measurable transformations on a measurable space (X, €).
Here the main difficulty is that the almost invariant o-field 55 need not be
sufficient for %;. Below we describe two situations where invariant measures
are representable even though ¥ is pot necessarily separable.

THEOREM 2. Suppose (X, @) is a measurable space and T is a compact group
acting measurably on (X, &). Then every invariant measure is representable and
has a unique representing measure.

ProoF. As Jis a compact group acting measurably on (X, &), it follows by
a result of Farrell [4, Theorem 3] that the invariant o-field 4; is sufficient for
®;. Hence, by Lemma 5, % is sufficient for P¢ and 9 = (95 U Ng). We
now verify that condition (b) of Lemma 1(ii) holds. Since 4g = 0(3g U Ny),
in order to show that condition (b) holds, it suffices to prove that if u € Pg,
A € 85 and p(A4) > 0, then there exists ¥ € ex Pg such that »(4) = 1. Let,
then, u € P4, 4 € 35 and p(4) > 0. Plainly, 4 # 2. Let x, € A4 and define
#on € by 8(E) = Ig(xy). So 8 is a 0-1 valued measure on &. Since the action
of T on (X, &) is measurable and §(T ~'(E)) = fI(T(x))dd(x) for every T
€ Fand E € &, it follows that, for fixed E € &, the map T — §(T"!(E)) is
(Baire) measurable on 9. Consequently, we can define a measure » on & by
KE) = f8(TY(E))d\(T) where X is Haar measure on 9. It is easy to verify
that » € $yand » = 6 on Y5 Hence »|9y is 0-1 valued, and since J
= o(%5 U 9g), #|%; is 0-1 valued. Thus » € % and so, by virtue of Lemma
1(), » € ex Py as 9 is sufficient for Fy. Since » = 6 on 9y, we have »(d)
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= §(4) = I,(xy) = 1. So condition (b) of Lemma 1(ii) is verified. Conse-
quently, in view of the fact that &, is sufficient for 9y and Lemma 1(ji), it
follows that every invariant measure is representable and has a unique
representing measure, which concludes the proof.

For the case of a finite group 9, the above result was proved by Hewitt and
Savage [7, Theorem 11.7]. The next result, which extends the field of
applicability of Theorem 1, is motivated by the proof of Theorem 2.

THeoReM 3. Let (X, &) be a perfect space and let 3 be a family of measurable
transformations on X. A that either

(a) % is sufficient for Ty, and there exist a countable family % C T and a
Junction y: ex g — ex Gy such that {8) = 0 on 84 for every 8 € ex Bq, or

(b) %5 is sufficient for F5, and there exist a countable family 5 C ¥ and a
function yy : ex Ty —> ex Gy such that () = 8 on 35 for every 8 € ex By,

Then every invariant measure is representable and has a unique representing
measure.

ProoF. Assume (a) holds. By Lemma 5, %5 is sufficient for $yand §;
= o(%5 U Ng). We now check that condition (b) of Lemma 1(ii) holds. For
this it suffices to check that if p € 95, A € %5 and p(4) > 0, then there is
» € ex 9y such that »(A) = 1. This is because % = o(fg U Ry). So let
B E By, A € 9y and p(4) > 0. Now g € %y ; hence, by Theorem 1, p is
representable, ie., there is a measure m on (ex 95,250) such that u(E)
= fo9. 8(E)dm(8) for every E € &. As p(4) > 0, there is § € ex s, such
that 8(A) > 0. Let» = y{(8). So » € ex %y. Since A € 4yand ¢(§) = fons,
it follows that »(4) = 8(4) > 0. As » € ex %, in fact, »(4) = 1 (Lemma
1(i)). Thus, condition (b) of Lemma 1(ii) is verified. Since & is sufficient for %,
Lemma 1(ii) yields the desired result.

The proof of the theorem in case (b) holds is similar and is omitted.

We conclude this section with the remark that we have been able to prove
representation theorems for invariant measures only in the situations where &;
is sufficient for $5. We have no results for situations where this condition fails.
Certainly our methods no longer work.

6. Examples. The examples that follow illustrate various aspects of the
theory discussed in the previous sections. Some of the examples highlight the
difficulties inherent in the situations where Jg is not sufficient for %y.

ExaMpLE 1. Let Xy = {0,1} and let €, be the discrete o-field of X;. Set
X = XY and let & be the product o-field on X, all of whose components are
€,. Suppose J is the group of transformations on X which permute the
coordinates of elements of X. The group J can be identified with the group of
permutations of N and so equipped with the topology inherited from N%
where N¥ is equipped with the product of discrete topologies. So endowed
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with a topology, ¥ becomes a Polish group acting measurably on (X, ). We
have already observed in §4 that T is separable. We now show that 4g is not
sufficient for &. [But of course J; is sufficient for 9y for J is separable (Lemma
4).]

The structure of % is very simple. Indeed, g is atomic and has countably
many atoms, all but one of which are countable. The set of all elements of X
for which infinitely many coordinates are 0 and infinitely many are | is the
only uncountable atom of 9y For p € [0, 1], denote by i, the product measure
on &€ with identical components, each component placing mass p on 0 and
mass 1| — p on 1. Plainly, the measures 2,0 < p < 1, are continuous on & It
follows that the measures p,, 0 < p < I, agree on %y Consequently, %4 is not
separating for the family (p.p: 0<p<1} Since {1, 0<p< 1} C T, it
follows that %y is not sufficient for %;.

The argument of the previous paragraph shows that any continuous
measure p € Pyis 0-1 valued on %y. So, if we take g to be a continuous mixture
of the measures By 0 < p < |, for instance,

WE) = f(o.,)

#,(E)dN(p)
where A is Lebesgue measure and E € &€, we get an example of an invariant
measure which is 0-1 valued on 4 but not ergodic.

ExampLE 2. This is taken from [1]. Let X be the real line and & the Borel o-
field of X. Let F be the family of all one-one transformations 7 on X onto X
such that {x € X: T(x) # x} is finite. Then T is a family of measurable
transformations on X. It is easy to see that Py is just the family of continuous
measures on & Moreover, 33 = € and hence sufficient for %;. We now show
that there are no ergodic measures. For if p € %j, then p|@ is 0-1 valued.
Since @ is countably generated and contains singletons, p({x}) = 1 for some
x € X. But then p is not continuous on &, so p & Py, which yields the desired
contradiction. Thus, in the nonseparable situation, the perfectness of the space
(X, &) and the sufficiency of d; for 9; need not ensure the representability of
invariant measures.

ExampLE 3. Let (X, € be as in Example 2. We first introduce some
terminology and notation. For 4 C X,let—-A4 ={x € X: —~x € 4}. A
measure g on @ is symmetric if p(4) = p(—A) forevery 4 € €. If x € X, §(x)
is the measure on @ which concentrates on the point x.

For a > 0, let T, be the transformation on X to X which interchanges the
points g and —a and leaves the other points fixed. Let § = {T,: 2 > 0}, 50 F
is a family of measurable transformations on X. The following facts are easy
to verify:
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(i) For a measure y on & p € 9y if and only if p({a}) = p({~a}) for every
a > 0, so that, in particular, all continuous measures on € are invariant;

@iy ={4c@a=—4a);

(iii) the extreme points of g are just the measures $8(a) + §6(-a), a > 0
(use the fact that §yis countably generated and has atoms of the form {a, —a}
to verify this). It is evident from this that condition (b) of Lemma 1(ii) holds.
Now, if g € 9y and g is representable, it is clear that u is symmetric. Taking
4 to be a continuous measure on & such that p((—c0,0)) % p((0, ), we see
that g € %y but  is not representable. Consequently, in general, condition (b)
of Lemma 1(ii) is not a sufficient condition for the representability of invariant
measures.

ExAMPLE 4. This example shows that ergodic measures need not be extreme
points. Let (X, &) be as in Example 2. We need the following lemma due to B,
V. Rao [14]; see [14] for a proof.

LeMmMA 8. There is a one-one function f on X onto X such that () f = f~!, and
(ii) for every set E € @ such that both E and E* are uncountable, f(E) & @.

Let f: X —> X be as in the above lemma. For each x € X, let T, be the
transformation of X to X which interchanges the points x and f{x) and leaves
the other points fixed. Let § = {T;: x € X}, so Tis a family of measurable
transformations on X. Plainly, a measure p is invariant if and only if
p({{x}) = w({F(x)}) for every x € X. Consequently, every continuous measure
is invariant, It is not difficult to see that §; = {4 & & f7!(4) = 4}. We now
show that every continuous measure on & is ergodic, but that no continuous
measure on & is an extreme point of 9?. Let, then,  be a continuous measure
on@ If A € %, thenA € € and f'(4) = 4, 50 that, by Lemma 8§, 4 is
either countable or cocountable. So, for every 4 € &, p(4) = Oor 1, aspis
continuous. This proves u is ergodic. Since p is continuous on &€ and & is
countably generated, p is nonatomic on & Choose a set B € & such that
u(B) = 4. Since for any T € I, BAT~'(B) contains at most two points, it
follows that (B A T~!(B)) = 0 for every T € 9. Define measures A, A, on
€ by M(E) = u(B N E)/i(B), \(E) = p(B° N E)/p(B). Using the fact
that B is p-almost invariant, ome checks that A, A, € %y. Plainly, A
# Ay and g = §A; + JA;. Hence g is not an extreme point of F;.

ExaMPLE 5. Let (X, @) be as in Example 2. According to a classical result
(see, for example, [10, pp. 525, 532]), there is an uncoutable set M C (0, c0)
such that M is universally null, i.e.,, for every continuous measure s on &,
#*(M) = 0 (here u* is the outer measure induced by pu). The continuum
hypothesis is needed to prove the existence of such a set. Let N = M U - M,
so that N is uncountable, universally null, does not contain 0, and N = —N.
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For x € M, let T, be the transformation of X to X which interchanges x and
—x and leaves the other points fixed. Let § = {T,: x € M), so T is a family
of measurable transformations on X. Clearly, a measure ¢t on & is invariant if
and only if p((x}) = p({—x)) for every x € M. It is not difficult to verify that

L=4udyr:A4e€@4 E84=—-4 and A4y < N°).

Burkholder has proved that & is not sufficient for the family of symmetric
measures on @ see [3, p. 1192]. As every symmetric measure is invariant, this
proves that & is not sufficient for %;.

We now show that every p € 9y is representable and has a unique
representing measure. First note that

ex By = (§6(x) + }8(=x): x € M} U {8(x): x € N°).

Consider now the function g: X — ex %; defined by ¢(x) = 18(x) + }8(—x) if
x € N, and {x) = 8(x), if x € N°€. Check that ¢ is a o-isomorphism of the
o-fields o(%; U {N}) and Z¢. If p € Brand p is discrete, then it is obvious that
u is representable and has a unique representing measure. So, then, let p be a
continuous measure. As N is universally null, N is p-measurable. Consequent-
ly, there is a unique countably additive extension f of p to o(@ U {N}).
Moreover, i{N) = 0. Now, for any E € &, we have

WE) = IE N N°) = [ ox)(E)dp(x) = [, #0x)(E)dplx)

= fu% W(E)dnp~' (),

so that p;p'l is a representing measure for p. Suppose now that m, m, are
representing measures for g. Use the o-isomorphism ¢ to transfer the measures
m; on Zg to measures A; on 0(55 U {N}), i =1, 2. Then, for every E € @, we
have

WE) = [, #EVIN ) = f, 20)(E)dN ().

It follows from this that \; = u = A, on 575. As N is universally null, there is
a se¢t BE@ such that B C N° and p(B) = 1. Note that then B
€ Gyand so \(B) = \(B) = 1. Now let F € o((35 U {N)), 50 F = (E,
N N) U (E, 0 N€), where E; € 95, i = 1,2. Then

MF) = M(F 0 B) = N(E; N B) = M(Ep), i=12
As E; € 85, N(Ey) = My (Ey), s0
N(F) = N(F).
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Thus, A, = A; on o(3; U {N}), 50 m; = m, on Zg So p is representable and
has a unique representing measure. Finally, if p € 9y is arbitrary, we can
decompose p into its discrete and continuous parts, which will be again
invariant, and then we can use the results established above for discrete and
continuous invariant measures to show that g is representable and has a
unique representing measure.

Thus, the sufficiency of ¥ for %5 is not a necessary condition for the
representability of invariant measures. Note that in proving Lemma 1(ii) one
uses the fact that the map 4 — {» € ex %4t #4) = 1} is a s-homomorphism
of J; onto Z¢ This is a consequence of the sufficiency of & for 9. In the
present example, it is clear that the above map is not a ¢-homomorphism of &
onto =, Nonetheless, every invariant measure is representable. This suggests
that, when 55- is not sufficient for 95 but, in some sense, there are enough
extreme points, we should look for a larger o-ficld, which may not be
contained in &, to play the role of §.J This will involve us in the existence of
extensions of invariant measures, We have not yet explored this,

ExAMPLE 6. Let (X, &) be as in the previous example. Using a result of F.
Bernstein (see, for example, [10, p. 514]), we can get a set N C X such that
N = —N, 0 & N, and neither N nor N° contains an uncountable Borel subset
of X. As in Example 5, for each x € N N (0, ©), let T, be the transformation
of X to X which interchanges x and —x and leaves the other points fixed. Let
9= (T: x € NN (0,0)}. Then Fy, %, ex Ty and =4 can be described just
as in Example 5. If ¢ is as in Example 5, then one shows that ¢ is a ¢-
isomorphism of the o-fields o(%3 U {N}) and Zg Using this one shows that
every p € %gis representable. For instance, if g is a continuous measure on €,
then we obtain a countably additive extension & of p by setting E(E)
= u*(E N N° for E € o(@ U {N}). Since p*(N°) = 1, I(N°) = 1. Now a
computation as in Example 5 shows that ;lzp" is a representing measure for p.

Now et p be a continuous symmetric measure on &, so up € F. We show
that p has at least two distinct representing measures. Define countably
additive extensions p, p, of u to o(@ U {N)) as follows:

m(E) = g*(EN N) and p,(E) = u*(E N N).

It is easy to check that g, ¢~ ! and By Vare representmg measures for p (one
uses the fact that p is symmetric to check that 1, ¢! is a representing measure
for p) But " =# pon oz U (N}) for y;(N) =0 and p,(N) = 1. So
@~ " and p, ! are distinct measures on Zp
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