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ABSTRACT. In this paper we attempt & unification of several
selection theorems in the literature. It is proved that the existence of “nice’
selectors In a certain class of selection problems is essentislly equivalent to the
fact that certein families of sets satisfy a weak version of Kuratowski's reduc-
tion principle. Various special cases are discussed.

1. Introduction. Several authors, notably Kuratowski and Ryll-Nardzewski
(61 and Michael [8], have proved selection theorems which may loosely be
described as follows: X is a set, ® a family of subsets of X, Y is a complete
wetric space, F: X — 2Y, the space of nonempty closed subsets of Y, satisfies
the condition:

kKEX:FX)NV+ZIED

for each open set ¥ in Y; then, under suitable conditions on ¢ and Y, the
writers mentioned above establish the existence of “nice” selectors for F. The
condition imposed on @ by Kuratowski and Ryll-Nardzewski is of a set-theoretic
nature, while Michael’s conditions are topological.

The aim of this article is to unify these theorems. Indeed, it is shown that
the existence of “nice” selectors for the class of selection problems described
spove is essentially equivalent to the fact that & satisfies a weak version of the
reduction principle of Kuratowski [5]. It then becomes possible to derive various
well-known selection theorems by simply noting that certain families satisfy the
reduction principle.

In §2 we give the basic definitions and notation. §3 contaips the statements
and proofs of the main results. In §4 we deduce several known and some new
results from our main theorems. §S5 deals with the more general problem of find-
ing selectors for functions F: X — A(Y) —~ {@}, where Y Is, as usual, a complete
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metric space and P(Y) is the power set of Y. Here we formulate a theorem
which is essentially an abstraction of the method used by Shchegolkov (cf. §15
in [1]) to prove that a planar Borel set, all of whose vertical sections are F,
sets, can be uniformized by a Borel set.

2. Definitions and notation. Throughout X is a set, F a family of subsets
of X. We {dentify cardinals with initial ordinals. X, u stand for infinite cardink
&, B, vy for ordinals. A% is the successor cardinal to A.

Say that F is Aadditive (\-multiplicative) if whenever {4,, a <f} C |
and B <A, U,cp 4y €F (Nycp A, €F). Denote by F, the smallest )
additive family containing F. We shall sometimes write F, for F“l' F is said to
be subtractive if A, B € F implies that 4 — B € F. F° stands for the family
of subsets of X whose complements belong to F.

According to Kuratowski [S], F satisfies the reduction principle (and we
write RP(F)) just in case whenever A,, 4, € F, there exist sets B,, B, such
that () B;€F,i=1,2, (i) B, CA, i=1,2,(i) B, N B, =g and ()
B, U B, = A, UA,. Analogously, say that F satisfies the A-reduction prin-
ciple (and write \-RP(F)) if whenever {4, @ <} C F and § <A, there
exist sets B, a < f3, such that

@) (Va < B)B, € F),

®) (Vo < B)B, C 4,),

© (Vo,d <f}a* o — B, N B,, = @) and

() Uu<ﬂ Ba = Ua<ﬂ Aa'

For our purposes, however, a weaker version of the above principle is neede!
Accordingly, we make the following definitions. F satisfies the weak reduction
principle (and we write WRP(F)) if whenever 4,, 4, € F and 4, U4, =X
there exist sets B,, B, satisfying conditions (i)—(iv) of the previous paragraph.
F satisfies the M-weak reduction principle just in case whenever {4, « <} Cl.
B <A and Ua<a A, = X, there exist sets B,, a < B, satisfying conditions
(a)—(d) of the previous paragraph. We use A-WRP(F) as an abbreviation of “F
satisfies the A-weak reduction principle.”

Let Y be a complete metric space. A function F: X — 2Y is said tok
F-normal if {x € X: Fx)N V + @} € F foreachopenset V in Y. Incaw
X is a topological space and F is the family of open subsets of X, a F-norml
function is also called a lower semicontinuous (1.s.c.) function. A function
f: X — Y is said to be a selector for F: X — 2¥ just in case (Vx € X)W
€ F(x)). f: X — Y is said to be F-measurable if f~Y(V)YEF for every open
set V in Y.

Say that aset A C [0, 1] x [0, 1] is elementary coanalytic if there exis
a sequence A,, n =1, 2,**, of coanalytic subsets of [0, 1] x [0, 1] such®
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) A4, DA, n=1,2,"""
Gi) 4 =N, 4,
(iii) For each x € [0,1] and each n 21,
A (‘!—ff {y €0, 1]: (x, ) € A,,}) is empty or a finite union of nondegenerate
closed intervals.
The rest of our terminology and notation is quite standard and we refer the
reader to [2] and [4].

3. Main results.

THEOREM 1. Let X bea set, ® a family of subsets of X such that @,
X € ®, ® is \*-additive and Xy-multiplicative. Then the following conditions
are equivalent:

(a) AT-WRP(®).

(M) If Y isa complete metric space which has topological weight < )\,
then any ®-normal function F: X — 2Y admitsa (& N ¢‘)R+-mmsumble
selector.

(c) If Z isa discrete space of cardinality < \, then any ®-normal func-
tion F: X — 2% admitsa (® N ®°)-measurable selector.

ProOF. (@)—(b). We follow the idea of the proof of the main theorem
in [6].

Let d be a complete metric on Y such that the diameter of Y is <1.
It suffices to define a sequence of functions f,: X — ¥, n =0,1,2,++,such
that

) (Fx € X)(d(f,(x), F(x)) <27™), n >0,

i) (Fx € X)A(f,(x), fr_1(x)) <272, n >0, and

@iii) f, is (PN @")A 4+-measurable, n = 0.
For then setting f(x) = lim,, f,(x), x € X, we get a selector f for F; since
A = X, it follows from the lemma of §1 in {6] that f is (¢ﬂ¢")}\+-measurable.

To construct the functions f,, choose a dense set D in Y such that
Card(D) < X, Enumerate the elements of D: 7g, ry,c*+, rp°**,a<
Card (D). Define fy =7y, Let n >0 and suppose f,_, has been defined to
satisfy (i)—(iii) above. Let

C8 = {x: d(ry, Fx)) <277, a < Card(D),
D7 = {x: dry, for () <2702} & < Card(D),
A% =CZ N D, a < Card(D).

r:l:inly, the sets A7 € @. Claim: X = U, ccou(p) 43, To see this,let x € X.
oose y € F(x) such that d(y, f,_;(x)) <27("~1), Pick r, €D so that
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d(y, 7q) <277 It follows that d(r,, F(x)) < 27" and d(,, f,.,(x)) <
2702 55 x € A7,

Since A*T-WRP(®), there exist sets B%, & < Card(D), such that B! € &,
Br c AL BN By = g,if a+ p,and U,ccoapy B = X. In fact, since
& is A*-additive, the sets B] € (& N &°). Now define f,: X — Y as follows:
set f,(x) =r,, if x € Bj. A routine verification shows that f, satisfies condi.
tions (i)—(iii) and the proof of (a) —* (b) is complete.

() = (c) Is entirely trivial.

©—@) Let {4,,a <} C &, let 8§ <A* and suppose that U,z 4,
= X. Take Z = B, i.e., the set of ordinals less than B. Equip Z with the dis-
crete topology. Note that Card(Z) < A. Define F: X — 2Z  as follows:

Fix) ={a €Z: x€ A4,).

Since @ is AT-additive, it follows that F is ®-normal. Consequently, there is
a ( N ®)-measurable selector £ for F. For a € Z,let B, = f~'({o}).
Verify that B, € ®, 8, N B,, = g, if a# ', B, C A, and Ua<, B, =X
Hence AY-WRP(®). This completes the proof of Theorem 1.

The preceding result can be stated more elegantly for compact metric spaces

THEOREM 2. Let X bea set, ® a family of subsets of X such thatg,
X €& P is N-additive and Xy-multiplicative. Then the following conditions
are equivalent:

(a) ®° satisfies the first principle of separation, i.e., whenever E, F € ¢*
and ENF = @, thereisa set H € (d N d°) suchthat ECH and HNF=4¢

() WRP(®).

(c) X-WRP(®).

(d) If Y isa compact metric space, then any ®-normal function F: X — 2"
admits a (® N ®€),-measurable selector.

(&) If Z isa finite discrete space, then any ®-normal function F: X —2
admits a (® N ®)measurable selector.

Proor. The implications (a) <> (b), (d) — () — (b) are quite obvious.

(b)—(c). We shall establish (¢) by induction. Suppose the proposition is
true for m sets, m > 2. Let A,, A;,***, A, ., € ® and suppose that
U ’,'_'__‘:‘ A, = X. By induction hypothesis, we can “reduce” the sets 4,, Ay,
cer Ay v Ay VA, 4 €. Wepgetsets By, By,*++, B, €® such tha
BNB =g for 1<i#j<mB CA,1<i<m-1,8,CA4, Ud,,
and U,g, B, = X. Since ¢ is Ry-additive, B, € (® N ), 1 << m. Con
sequently, B,, —A4,,, B,, — A,, ., € ®°. Morcover, (B,, —A4,,) N

B = Am+1) = @ Since (b), or equivalently (a), holds, there exists
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VE@NP) suchthat B, -4, CVad VNB, ~4,,))= 42
Hence B, -V CA, and B, NVCA, .. Aso B, -V,B, NVESD
Nowset C;=B,1<i<m-1,C, =B, -~V ad C,, =8, NV.
Then G,EP1KIKm+1,CCA,1<I<m+1,6NE =g for
1<i#j<m+1,and U2 ¢, =U2} B,UC,VUC,, =UR, B
= X. This shows (c) is true for (m + 1) sets, and the proof of (b) — (c) is
complete.

(c) = (d). The proof is exactly like the proof of the implication (2) —* (b)
in Theorem 1, except for the following modifications:

Define fo = yq, where y, is a fixed but arbitrary element of Y. Suppose
now n >0 and f,_, hasbeen defined to satisfy conditions (i)—(iii) with
A = R,. Since Y is compact, we can choosea 27" net {y{, y5,- -, yz"}
in Y. Let

= {x: d(yf, Flx) <277, 1<t <k,

D = {x dyP, £y () <2772, 1 <<k,
Ar=cpnDp, 1<i<k,

As before, the sets A € & and Ufg, A = X. Since K,-WRP(&), we can
“reduce™ the sets A7, 1 <i <k, by disioint sets B} € (P N ),1 i<k,
such that B} C A7 and Uiz, B = X. Now set f,(x) = y0,if x € By
Verify that f,, works. This completes the proof of Theorem 2.

REMARK 1. Note that in proving the implication (b) ~* (¢) in Theorem 2,
we did not use the full hypothesis regarding additivity of the family ®; just Ry
additivity of ® suffices. It is also worth noting that, in general, X,-WRP(®)
need not imply X;-WRP(®), even if ¢ is closed under arbitrary unions and
intersections. Indeed, let X = the real line and take ® = {g& X, [- n, n],

n > 1}. Then Rg-WRP($), but 7I(x,-WRP(®)).

REMARK 2. The weak reduction principle is strictly weaker than the reduc-
tion principle. For example, take X to be the real line and & = the family of
all open subsets of X which do not contain zero. Trivially, A-WRP(®) for each
cardinal A. But TI(RP(®).

4, Special cases. As mentioned in the Introduction, our results, especially
Theorem 1, are an attempt at a unification of a certain class of selection theorems.
1n this section, we shall deduce several known results from Theorems 1 and 2.

It is convenient at this point to quote a result of Kuratowskl, which we
shall find useful in the sequel. For a proof, the reader is referred to [S].

PROPOSITION. If F Isa N-additive and subtractive family of subsets of X,
then 7\+-RP(F)‘+).
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We now deduce the main result of {6] (see also [9, p. 50]).

THEOREM. 3. Let L bea field of subsets of X. If Y isa Polish space.
then any L, -normal function F: X — 2Y admits a L ;-measurable selector.

ProOF. From the Proposition with A = Ry, it follows that X,-RP(L,).
In Theorem 1 take A = K,. The desired conclusion follows from the implication
(a) — (b) of that theorem.

Several interesting applications of Theorem 3 are pointed out in {6] and in
[9]. We give below some new applications. The first generalizes a result of Kura.
towski [4, p. 434] on the extension of Borel functions.

COROLLARY 1. Let L bea field of subsets of X and suppose that
ACX belongsto (LY. Let g bea L, N A-measurable function on A into
a Polish space Y, where L, N A is the trace of |, on A. Then there isa
L ,-measurable function f on X into Y such that f extends g.

PROOF. Define F: X — 2Y as follows:
i €
Fix) = {{g(X)}, if x€4,

otherwise.
Check that F is L -normal. By Theorem 3, there is a L ,-measurable selector f
for F. Plainly, f extends g
Next, we give a new proof of a well-known result due to von Neumann (10)
(see also [9, p. 65]).

COROLLARY 2. Let A be an analytic set, and let h be a continuous fun
tionon A onto a separable metric space X. Let A be the o-field on X gener
ated by the analytic subsets of X. Then there is an A-measurable function
f: X — A such that hof(x) = x for every x € X.

PrROOF. Since A4 is analytic, there is a continuous function g on I, the
space of irrationals, onto A. Define F: X — 2% by F(x) = (& og) " (D).
For any openset V in Z, {x: F(x) N V # g} = h(g(V)), which is analytic.
So F is Anormal. By Theorem 3, there is a A-measurable selector f': X —
for F. Take f = gof'. Plainly, f does the trick!

As a final application of Theorem 3, we prove that a Borel set, all of whose
(vertical) sections are compact, can be uniformized by a Borel set. This result is,
of course, not new; however, our proof is.

COROLLARY 3. Let X,, X, be Poh:h spaces and let B C X, x X, be
Borel such that for every x, € X, B*1 (- {x, € X;: (x4, x3) € B)) is com
pact. Then there exists a Borel function f: n(B) — X, such that graph { CB.
(Here w denotes projectionof X, x X, to X,.)
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PROOF. By a result of Kunugui [3, Corollary 2, p. 100], X def n(B) is

Borel in X,. Take L to be the Borel o-field on X and define F: X —2%2
by F(x) = B*. Now the above-mentioned result of Kunugui implies that F is
L-normal, and the desired result falls out of Theorem 3.

In the remainder of this section, we deal with situations where Theorem 3
does not apply, either because the space Y is not separable or because the rele-
vant family of subsets of X is not of the form L, where L isa field.

The next result is proved in the theory ZFC + Martin’s axiom (for a state-
ment of Martin’s axiom, see [7]).

COROLLARY 4. Assume ZFC + Martin’s axiom. Let R be the real line
and let A be either the o-field of Lebesgue measurable subsets of R or the g-
field of subsets of R having the Baire property. If Y isa complete metric
space with topological weight < 2“° and F: R —2Y js A-normal, then F
admits an A-measurable selector.

PROOF. Let N be a cardinal such that A <2™0 and the topological
weight of Y < A According to Corollary 1, p. 168 and Corollary 1, p. 171 in
[71.A is 2%0.additive, and hence A*-additive. Consequently, by the Proposi-
tion, or directly, one sees that A*-RP(A). Now use the implication (a) — ()
of Theorem 1 to complete the proof.

Another consequence of our theorems is the following result of Shchegolkov [1].

COROLLARY 5. If A is an elementary ooanalytic" subset of 10,1) x [0, 1]
such that n(A) is Borel, then there is a Borel function f: n(A) — [0, 1] such
that graph f C A. (Here m is the projection to the first coordinate.)

PROOF. Let X = m(4) and let & be the family of coanalytic subsets of
X, Define F: X — 28] by Fx) = A% (={y € [0, 1]: (x, W EAD. It
follows from the definition of an elementary coanalytic set that F is ®-normal.
Moreover, according to a celebrated result of Luzin [4, p. 485], &€ satisfies the
first principle of separation. The implication (a) — (d) of Theorem 2 and one
more application of Luzin’s theorem now complete the proof.

COROLLARY 6. Let X,, X, be Polish spaces,and let E C X, x X, bea
PCA=set such that for every x, € X,, E*V isa closed subset of X,. Assume
that w(E), the projection of E to X, is simultaneously PCA and CPCA. Let
A be the ofield on n(E) of sets which are simultaneously PCA and CPCA.
Then there is an A-measurable function f. m(E) — X, such that graph { C E.

PrOOF. Let X = n(E) and let ® be the family of PCA subsets of X.
Kuratowski has proved that R,;-RP(®) [5, p. 187]. The rest of the proof is .
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exactly like the proof of the previous corollary, except that we use Theorem 1
(with A = R,) instead of Theorem 2.

So far in this section we have considered problems which are essentially set-
theoretic in nature. We now turn our attention to problems of a topological
character.

THEOREM 4. For a T,-space X, the following conditions are equivalent.

(i) X is paracompact and strongly Odimensional.

(ii) If Y is a complete metric space, then every ls.c. function F: X —2Y
admits a continuous selector,

PrRoOOF. (i) — (ii). Take @ to be the family of open subsets of X. In
view of the implication (a) — (b) of Theorem 1 and the fact that & is closed
under arbitrary unions, it suffices to prove A*-WRP(®) for each cardinal \.

Let, then, {4,, « <A} be an open cover of X. By paracompactness,
there is a locally finite open refinement {B,, i € I} of {A,, « <1A}. Since X
is paracompact, X is normal [2, Theorem 2, p. 207]. Consequently, as X is
strongly O-dimensional, {B;, i € I} admits a disjoint open refinement {C.jeJ}
[8, Proposition 2]. It follows that {C;-, j € J} is a disjoint open refinement of
{4,, a <A} For a <A,set D, = U{C,: G €4, and (V8 <a)C; € 4p)
Plainly, the sets D, are disjoint, D, €®,D, C 4, and U,cr Dy = Ujes G
= X. Hence, AT-WRP(®).

(ii) — (i). Conditign (ii) implies, in particular, that condition (c) of
Theorem 1 holds for each cardinal. Hence, from the implication (¢) — (a) of
Theorem 1, we get: AY-WRP(®) for every cardinal A. From this, (i) follows
immediately.

Implication (i) — (ii) of Theorem 4 is due to Michael [8]. The converse
appears to be new. We conclude the section by stating one more topological
result.

THEOREM 5. For a T,-space X, the following are equivalent:

(@) X is normal and strongly Odimensional.

() If Y isa compact metric space, then every ls.c. function F: X — 2
admits a continuous selector.

ProoF. Use Theorem 2.

S. A selection theorem for general set-valued mappings. In this section we
discuss briefly the problem of finding “nice™ selectors for set-valued mappings
whose values are not necessarily closed sets.

THEOREM 6. Let X be a set, & a family of subsets of X such that g,
X € &, & is N, -additive and Ry-multiplicative. Let F: X — P(Y) - (¢},
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where Y isa Polish space. Suppose that there exists a sequence of sets A,,
n=1,2,--+,and functions G,: A, —2¥,n=1,2,--+, such that A, €,
G, is ® N A -normal, (Vx € ANG,(x) C Ax)),n=1,2,---,and

n=y Ap = X If R,-WRP(®), then there isa (& N ®€) -measurable selector
Jor F.

PROOF. Since ® is K, -additive and R,-WRP(®), there exist sets B,
n=1,2,---,suchthat B, € (® N ), B, CA,,B,NB, =g for
n#mand U;_, B, = X. Let H, be the restriction of G, to B, ie.,
H,=G, 1 B,,n=1,2,-+-. Then H, is ® N B, normal, n =1, 2,---.

As B, €@ N ®°), it follows that X,-WRP(® N B,), n =1,2,*-+. Hence,

by Theorem 1, H, admitsa (($ N &) N B,),-measurable selector [ B, Y,

n=1,2,-+-. Define f: X — Y bysetting f =/, on B,,n=1,2,---.

Then f isa (® N ®°),-measurable selector for F. This completes the proof.
We now use the above theorem to derive a known result.

COROLLARY 7. Let X, be a Odimensional separable metric space and let
X, bea 0-dimensional Polish space. If E is a nonempty open subset of X, 1 x X,
then there is a continuous function [ on n(E), the projectionof E to X, s
into Y such that graph f C E.

PrROOF. Let X = n(E) and take & to be the family of open subsets of
X. Since X, x X, isa separable O-dimensional metric space, there exist clopen
subsets C, of Xy x X, suchthat E= Uy C,. Set 4, =n(C,), n=
1,2,°°°, sothat A, E® and U,.=|A =X Deﬁne F: X = P(X;) ~ {2}
by F(x) = E* andG 4, =22 by G(x)= C*,n=1,2,--. Plainly,
G,is (®n A,)-normal and (Fx € A XG,(x) C F(x)). Finally, by a well-
known theorem, X;-RP(®) in [4, Theorem 1, p. 279]. The desired conclusion
now follows from Theorem 6.
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