S. B. Rao

ABSTRACT. Let # be a graphic sequence of positive integers. Call w forcibly line-graphic if every realization of w is a line graph. In this paper we determine the forcibly line-graphic degree sequences. The proof uses the 'laying off' technique developed by Kleitman and Wang to construct a realization of a graphic sequence.

Introduction.

Let $\pi = \{d_1, \ldots, d_p\}$ be a nonincreasing sequence of positive integers. Call π graphic if there exists a graph with degree sequence π . Let P be an invariant property of graphs, that is, a property depending only on the isomorphic types of graphs. Call a graphic sequence π potentially P (forcibly P) if at least one (respectively, every) realization of π has the property P. The characterization of forcibly hamiltonian, potentially planar, potentially line-graphic degree sequences are some of the unsolved problems in this area. Characterization of potentially self-complementary degree sequences was obtained by Clapham and Kleitman [1], and that of forcibly self-complementary degree sequences was given in Rao [4]. In this paper we characterize forcibly line-graphic (equivalently, potentially non-line-graphic) degree sequences.

Let $\pi=(d_1,\ldots,d_p)$ be a nonincreasing sequence of positive integers. By the residual sequence obtained after laying off d_1 from π , we mean the nonincreasing rearrangement of the sequence π , where

$$\mathbf{r}^{\star} = \begin{cases} d_{1}^{-1}, \dots, d_{d_{j}^{-1}, d_{j}^{-1}, d_{j}^{-1}, \dots, d_{j-1}^{-1}, \ d_{j+1}, \dots, d_{p}^{-1} \ f \ d_{j} < j \ , \\ \\ d_{1}^{-1}, \dots, d_{j-1}^{-1}, d_{j+1}^{-1}, \dots, d_{d_{j}^{+1}^{-1}, d_{d_{j}^{+2}}, \dots, d_{p}^{-1} \ f \ d_{j} \geq j \ . \end{cases}$$

We record here three theorems which are used repeatedly in our discussion.

THEOREM A. (Kleitman and Wang [5,6]). Suppose π is graphic; then the residual sequence obtained after laying off d_j from π is also graphic for every $1, 1 \le j \le p$.

UTILITAS MATHEMATICA Vol. 11 (1977), pp. 357-366.

Further, a realization of π can be constructed from any realization of π^* by adding a new point adjacent to points of degrees $d_1-1,d_2-1,\ldots,d_{d_j}-1$ if $d_j < j$ and of degrees $d_1-1,d_{j+1}-1,\ldots,d_{d_j+1}-1$ if $d_j \geq j$.

Let π = $\{d_1^{},\dots,d_p^{}\}$ be a nonincreasing sequence. For every integer $r,\ 1\le r< p,$ define

$$EG(r, \pi) = r(r-1) + \sum_{i=r+1}^{p} \min \left\{ d_i, r \right\} - \sum_{i=1}^{r} d_i.$$

The theorem of Erdős-Gallai [2, Theorem 6.2] states that a sequence π with even sum is graphic if and only if EG(r, π) is non-negative for every r, 1 \leq r \leq p.

We use the following mild form of Koren's theorem [3]:

THEOREM B. (Koren). Let π be graphic and $EG(k, \pi) = 0$ for some k, $1 \le k < p$. Suppose $d_{k+1} \le k$. In any realization $G = G(u_1, \dots, u_p)$, where the degree of $u_k = d_k$,

$$\left\langle \begin{matrix} u_1,\; \dots,\; u_k \\ \end{matrix} \right\rangle \qquad \text{is the complete graph; and}$$

$$\left\langle \begin{matrix} u_{k+1},\dots,u_p \\ \end{matrix} \right\rangle \qquad \text{is the empty graph.}$$

To state Theorem C we need a definition. A triangle of a graph $\, G \,$ is called $odd \,$ if there is a point of $\, G \,$ adjacent to an odd number of its points.

THEOREM C. (Van Rooij, Wilf [P 74,2]). G is a line graph if and only if G does not have a $K_{1,3}$ as an induced subgraph, and if two odd triangles have a common line, then the subgraph induced by their points is K_{L} , that is, the complete graph of order 4.

For terminology and notation we follow Harary [2].

Characterization.

We remark that every graphic sequence with maximum degree at most two is forcibly line-graphic. So we assume henceforth that the maximum degree in a graphic sequence is at least three.

LEMMA 1. Let $\pi = \{d_1, \ldots, d_p\}$ be a nonincreasing graphic sequence with $d_p \ge 3$. Then π is forcibly line-graphic if and only if one of the following holds:

- (1) $\pi = (4,3,3,3,3)$;
- (2) $\pi = (4,4,4,4,4,4)$;
- (3) $\pi = (p-1, ..., p-1)$.

Proof. Suppose π is one of the sequences (1), (2), or (3). Then π has a unique realization G_1 accordingly as π is as in (i), $1 \le i \le 3$, where G_1 and G_2 are as in Figure 1 and G_3 is the complete graph

of order p. Clearly, G_1 is a line graph, $1 \le i \le 3$. Thus w is forcibly line-graphic.

To prove the necessity, assume that it is false for some value of p and let n be the smallest such p. Let $\pi_0 = (d_1, \ldots, d_n)$ be a graphic sequence of length n different from (1), (2), and (3) with $d_n \geq 3$ and which is forcibly line-graphic. We first derive several properties of this π_0 and then complete the proof of the lemma. Note that $n \geq 5$.

Case I: $d_n \neq 3$. Note that $d_n \geq 4$. Then lay off d_n from π_0 to obtain the residual sequence π_1 . By Theorem A, π_1 is graphic. Also the minimum degree in π_1 is at least 3. If π_1 equals (1) or (2), then π_0 equals (2) or (5,5,5,5,4,4,4). Then let G_4 be the graph obtained by joining a new point to the points 1,2,3, of G_2 . Note

that (1,2,3), (2,3,6) are odd triangles in G_4 with a common line and <1,2,3,6> \neq K_4 . Hence by Theorem C, G_4 is not a line graph. If π_1 equals (3) with p replaced by n-1, then π_0 is the degree sequence of the graph G_5 obtained from K_{n-1} by joining a new point x to d_n points of K_{n-1} . Let a,b be two points adjacent to x in G_5 and let c be a point non-adjacent to x. Since $3 \le d_n \le n-2$ and $n \ge 5$, it follows that (x,a,b), (a,b,c) are odd triangles in G_5 with a common line. Clearly, <x, a,b,c> \neq K_4 . Consequently G_5 is a non-line-graphic realization of π_0 . We may assume therefore that π_1 is different from (1), (2), and (3) and the minimum degree of π_1 is at least 3. Then, by definition of n, π_1 has a non-line-graphic realization. But then, by the Wang and Kleitman theorem and the fact that an induced subgraph of a line graph is also a line graph, it follows that π_0 is potentially non-line-graphic, a contradiction.

Case II: $d_3 \neq 3$. Then $d_3 \geq 4$. By (1), we have $d_n = 3$. Now lay off d_n from π_0 to get π_1 . If π_1 equals (1), then π_0 is one of the sequences (4,4,4,4,3,3), (5,4,4,3,3,3). The graph G_6 obtained from $K_{3,3}$ with bipartition (u_1,u_2,u_3) , (v_1,v_2,v_3) by adding the two lines (u_1,u_2) , (v_1,v_2) is a non-line-graphic realization of the former since (u_1,u_2,v_1) , (u_1,u_2,v_3) are odd triangles in G_6 with a common line and (v_1,v_3) is not a line. The graph G_7 obtained from $K_{3,3}$ by adding the two lines (u_1,u_2) , (u_1,u_3) is a non-line-graphic realization of the latter since $(u_1,v_1,v_2,v_3) = K_{1,3}$. If π_1 is (2), then $\pi_0 = (5,5,5,4,4,4,3)$ and the graph G_8 obtained from G_2 by joining a new point x to the points 1,4,6 of G_2 is a non-line-graphic realization of π_0 since (x,1,4), (x,6,4) are odd triangles in G_8 with a common line, but (1,6) is not a line of G_8 . If π_1 equals (3), it can be shown as in I that π_0 is potentially non-line-graphic, a contradiction.

Case III: $d_2 \neq 3$ and 4. Then $d_2 \geq 5$. Note that $d_3 = 3$ by II. Lay off d_n from π_0 to get π_1 and then lay off the degree 2 from π_1 to get π_2 . If π_2 equals (1) then $\pi_0 = (6,5,3,3,3,3,3)$. Since (4,2,2,2,2,2) is potentially non-line-graphic, so is π_0 . If $\pi_2 = (3,3,3,3)$ then $\pi_0 = (5,5,3,3,3,3)$. π_0 is unigraphic and that graph is not a line graph. Otherwise π_0 is not equal to (2) or (3) (with $p \geq 5$). Now, by

definition of n, π_2 and hence π_0 is potentially non-line-graphic, a contradiction.

Case IV: $d_2 \neq 3$. Then $d_2 = 4$, the only other possible value by III. Lay off d_1 from π_0 to obtain π_1 . Let n_i be the number of terms in π_1 which are equal to i, i = 2,3. Clearly, $n_2 + n_3 = n-1$, $n_2 \ge 3$, and n_3 is a positive even integer. The graph H_1 of Figure 2 is a non-line-graphic realization of π_1 where $x = (n_3-2)/2$, $y=n_2-3$. This is a contradiction.

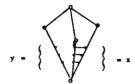


Figure 2.
The graph H₁.

We now complete the proof by showing that $\pi=(d_1,3,\ldots,3)$ is potentially non-line-graphic. If n=5, then π_0 equals (1). If $n\geq 6$, lay off d_1 to get π_1 and define n_2 , n_3 as in IV. If $n_3=0$, then the wheel of order n-1 is a non-line-graphic realization of π_0 since $n\geq 6$. In the case $n_3\geq 1$, we proceed as in Case IV to show that π_0 is potentially non-line-graphic, a contradiction and this completes the proof of the lemma.

LEMMA 2. Let $\pi=\{d_1,\ldots,d_p\}$ be a nonincreasing graphic sequence with $d_p\leq 2$. Let $k(\pi)=k$ be the largest integer 1, $1\leq 1\leq p$, such that $d_1\geq 3$. Suppose EG(k, π) > 0. Then π is potentially nonline-graphic.

Proof. The proof is by induction on p. The only graphic sequences of length 4 and $d_4 \le 2$ are (3,2,2,1), (3,1,1,1), and (3,3,2,2). Further, $EG(k,\pi)=0$ for each of these three sequences. Thus the lemma is true for p=4. Assume that the lemma holds for p-1 and let π be a graphic sequence of length p satisfying the conditions of the

lemma. In the case $d_2 \le 2$ or $d_1 = 3$, it is not difficult to show, by direct construction, that π is potentially non-line-graphic. Thus we may assume that $d_1 \ge 4$ and $d_2 \ge 3$. We prove the lemma only in the case $d_p = 2$, since the case $d_p = 1$ is similar. Lay off d_p from π to get π_1 . If the minimum degree of π_1 is at least 3, π_1 and hence π is potentially non-line-graphic by Lemma 1 unless π , is one of (1), (2), or (3) of Lemma 1. Since $EG(k, \pi) > 0$, π , is not equal to (3). The condition π_1 equal to (1) or (2) implies that π is one of (5,4,3,3,3,2), (4,4,4,3,3,2), or (5,4,3,3,3,2). The graphs obtained by joining a new point x to 2 and 4 in G_1, G_2 of Figure 1 are nonline-graphic realizations of the second and third sequences respectively since (2,1,5) and (4,1,5) are odd triangles with a common line but (2,4)is not a line. The graph obtained by joining a new point x to 1,2 of G, is a non-line-graphic realization of the third since <1, x, 3, 5> = $K_{1.3}$. Thus we may assume that the minimum degree in π_1 is at most two. If now EG(k_1 , π_1) > 0, where $k_1 = k(\pi_1)$, then by the induction hypothesis, π_1 is potentially non-line-graphic. This in turn implies that wais also potentially non-line-graphic. So we may assume that $EG(k_1, \pi_1) = 0$. This in particular shows that $d_2 = 3$, for if $d_2 \ge 4$, then $k=k_1$ and $EG(k_1, \pi) = EG(k_1, \pi_1) = 0$, contradicting the hypothesis.

Thus $d_2=3$ and hence $k_1=k-1$. Now by Theorem B in every realization of π_1 the k_1 vertices of degree greater than two are complete. Since $d_2=3$, we have $k_1\le 4$. Now $k_1\ne 4$, for otherwise the vertex of degree d_2-1 in π_1 is joined to two vertices of degree greater than 3, implying that $d_2\ge 4$, which is clearly false.

Case 1. k_1 = 3. Let H be a realization of π_1 in which the point u_2 of degree d_2 -1 is adjacent to u_1 of degree d_1 -1 and u_3 of degree d_3 . Let G be the realization of π obtained from H by joining u_p to the points u_1, u_2 of H. Let u_1 be the vertex not equal to u_1, u_3 adjacent to the other vertex u_4 of degree 3 in H. Since d_1 = 2, it follows that (u_1, u_4) is a line of H and hence one of G. But then $\langle u_1, u_3, u_1, u_p \rangle = K_{1,3}$, which implies that π is potentially non-line-graphic.

Case 2. $k_1 = 2$. Define G as above. Any vertex u_j ($j \neq p$) adjacent to u_1 is adjacent to u_3 as well. This implies that $d_1 = 4$ and

 π = (4, 3, 3, 2, 2). Here k = 3 and EG(k, $\pi)$ = 0, contradicting the hypothesis.

Case 3. $k_1 = 1$. Let H be any realization of π_1 and G be the graph obtained from H by joining u_p to the points u_1, u_2 of H. Let u_1 be the vertex adjacent to u_2 in H. Then (u_1, u_1) is a line of H. Since $d_1 \ge 4$ there is at least one more vertex u_1 such that (u_1, u_1) is a line of H. Then in $G, \langle u_1, u_1, u_1, u_2, u_p \rangle = K_{1,3}$. This implies that π is potentially non-line-graphic. This completes the proof of the lemma.

THEOREM 3. Let $\pi=(d_1,\ldots,d_p)$ be a nonincreasing sequence with even sum and $d_p\leq 2$. Let n_1 be the number of terms in π equal to 1, i=1,2. Define $k=p-n_1-n_2$. Suppose $k\geq 4$. Then π is forcibly line-graphic if and only if

- (1) $EG(k, \pi) = 0$,
- (2) d₁ = k,
- (3) $2n_2 + n_1 \le k$.

Proof. Suppose π is forcibly line-graphic. Then (1) follows from Lemma 2. By Theorem B, in any realization of π , the k points of degree greater than 2 induce a complete graph and the remaining p-k (> 0) points induce the empty graph. Now if $d_1 > k$, then, since $k \ge 4$, any realization of π contains $K_{1,3}$ as an induced subgraph. Consequently π is not forcibly line-graphic. Thus $d_1 = k$, proving (2). To prove (3), we note that $2n_2 + n_1 > k$ implies, by Theorem B, that $d_1 > k$.

Conversely, suppose π is a sequence satisfying (1), (2), and (3). By (1) and (3), π is graphic. By Theorem B, the only realization G of π is the line graph of the connected graph H consisting of a cut vertex with the property that the cut vertex belongs to exactly $k-n_2$ pieces of which n_2 are triangles, n_1 are $K_{1,2}$ and the remaining $k-2n_2-n_1$ are edges, where a piece of G with respect to a cut vertex x is the subgraph induced on $V(C_1) \cup x$, where C_1 is a component of G-x. Note that H has

 $3n_2 + 2n_1 + (k - 2n_2 - n_1) = k + n_2 + n_1 = p$ edges, and $k - 2n_2 - n_1 \ge 0$. This completes the proof of the theorem.

THEOREM 4. Let π be a nonincreasing graphic sequence with d $_{2}$ 2. Define k as in Lemma 2. Suppose $k \leq 3$. Then π is forcibly linegraphic if and only if π is one of the following:

Proof. Let π be one of (F_1) through (F_8) ; then π is realizable as a unique graph and this graph is a line graph. Thus π is forcibly line-graphic.

 $\label{eq:conversely} Conversely, let \quad \pi \quad \text{be forcibly line-graphic.} \quad \text{Then by}$ Lemma 2, EG(k, π) = 0. By hypothesis k \leq 3.

Case 1. k = 3. Let u_1, u_2, u_3 be the vertices of degree greater than 2 in a realization of G of π . By Theorem B, the subgraph induced on the remaining p-3 vertices of G is the empty graph. If $d_1 \geq 5$, then G has $K_{1,3}$ as an induced graph. Thus $d_1 \geq 4$. Suppose $d_1 = 4$, and let u_1, u_j be the points $(i,j \geq 3)$ adjacent to u_1 in G. If one of u_1, u_j is of degree 1, then G has $K_{1,3}$ as an induced subgraph. Thus we may assume that both u_1, u_j have degree 2. If both u_1, u_j are joined to the same set of points, then again $K_{1,3}$ is an induced subgraph of G. Now in case p = 5, π equals (F_1) , otherwise p = 6 and π equals (F_2) . Suppose now $d_1 = 3$, then π is (F_3) or (F_4) .

Case 2. k = 2. If $d_1 \ge 4$, we get a non-line-graphic realization of π . Thus $d_1 = 3$. But then π equals (\mathbb{F}_5) or (\mathbb{F}_6) .

Case 3. k = 1. If d_1 = 5, then we have a non-line-graphic realization of π . Thus d_1 = 4 or 3. In case d_1 = 3, π equals (F_7) and

finally if $\ d_1$ = 4, then $\ \pi$ equals (F₈) and this completes the proof of the theorem.

By the above characterization we note the curious and interesting fact that if π is a graphic sequence with at least one degree greater than two and π is not unigraphic, then π has a non-line-graphic realization.

Acknowledgements. I wish to thank the referees for their valuable suggestions regarding the presentation of the paper.

REFERENCES

- C. R. J. Clapham and D. J. Kleitman, The degree sequences of self-complementary graphs, J. Comb. Theory 20B (1976), 67-74.
- [2] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass. 1969.
- [3] M. Koren, Sequences with a unique realization by simple graphs, submitted to J. Comb. Theory, Series B.
- [4] S. B. Rao, Characterization of forcibly self-complementary degree sequences, submitted to Discrete Mathematics.
- [5] D. J. Kleitman and D. L. Wang, Algorithms for constructing graphs and digraphs with given valencies and factors, Discrete Math. 6 (1973), 79-88.
- [6] D. L. Wang and D. J. Kleitman, On the existence of n-connected graphs with prescribed degrees (n ≥ 2), Networks 3 (1973), 225-240.

Centre of Advanced Study in Mathematics University of Bombay Kalina, Bombay 400 029

Present address

Mathematical Statistics Division Indian Statistical Institute 203 B.T. Road, Calcutta 700035 India

Received August 8, 1975; revised July 12, 1976.