ON THE EQUIVALENCE OF EFFICIENCY-CONSISTENCY
AND ORTHOGONAL FACTORIAL STRUCTURE

RAHUL MUKERJEE AND A.M. DEAN

ABSTRAGT. Orthogonal factorial structure is shown to be a necessary and
sufficient condition for efficiency-consistency in connected and regular dis-
connccted designs. Thus, the result of Lewis and Dean (1985) is generalized
and the converse is proved. The equivalence of partial orthogonal factorial
structure and partial eficiency- istency is investigated.

1. Introduction.

Consider a block design, d, whose n-digit treatment labels represent
the treatment combinations of an n-factor experiment. Let T denote
the set of non-null binary vectors z = z1z2...2,, (Zi = Oor 1;¢ =
1,...,n}, and let a* denote the interaction between those factors for
which z; = 1, + = 1,...,n. Let d; denote the design formed from d
by deleting the it digit from the treatment labels for all ¢ for which
z;=0,1=1,...,n.

The design, d, is defined to have orthogonal factorial structure if the
best lincar unbiased estimators of the estimable contrasts belonging to
different factorial spaces are uncorrelated after adjusting for block effects
(see, for example, [4]). Lewis and Dean (1985) established that for an
equireplicate, connected, n-factor design, d, orthogonal factorial struc-
ture is sufficient for efficiency-consistency, where efficiency-consistency
is defined as follows:

DEFINITION 1 (LEWIS AND DEAN (1985)): An n-factor design, d, is
effictency-consistent if the eficiencies of all the estimable contrasts cor-
responding to a* are equal to the efficiencies of the equivalent contrasts
ind,, zeT.

The purpose of this paper is firstly to generalize the result of Lewis
and Dean (1985) to disconnected designs, and secondly to establish that
orthogonal factorial structure is a necessary condition for efficiency-
consistency. Thus it 13 shown that efficiency-consistency provides a
characterization for orthogonal factorial structure. The equivalence of
partial orthogonal factorial structure and partial efficiency-consistency
is also investigated.
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2. Main results.

Let the treatment labels of the design, d, correspond to the treat-
ment combinations of an n-factor experiment, where the n factors have
my,ma,..., m, levels respectively. Let 7 denote the vector of the v =
mimso ... m, factorial treatment effects listed in lexicographical order.
The estimable space corresponding to the interaction a*, z € T, can
be represented by a vector space, V*, of dimension ¢*, where 0 < ¢* <
MI{m; —1)*. Let P* be a ¢* x v matrix whose rows form an orthonormal
basis for V*. Then P*r denotes a full set of orthonormal estimable con-
trasts corresponding to a*. If a* is totally confounded then ¢* = 0 and
P= is the null matrix. Let A denote the intrablock matrix of d, and V,
the row space of A. We shall consider only connected and regular dis-
connected designs, that is designs for which V4 = @V * where @ denotes
direct sum over z € T, (see [8]).

Let P* be a matrix whose rows form an orthonormal basis for @V?¥
where @ denotes direct sum over y € T, y # z. Then, if g* > 0, the
variance-covariance matrix for P*7 is given by

02[P*AP* — (P*AP=')(P*APY )" (P*AP*)|"! = 62G,, (2.1)
say, where 7 is an intrablock estimator for 7 and 02 is the common
variance of the errors, (cf. Mukerjee (1980, 5.7)). To avoid trivialities it
has been assumed here that P* is non-null. Note that the matrix inverses
in (2.1) are well-defined, since for a connected or regular disconnected
design, PAP' is positive definite, where P = (P*’, P='),

For a fixed z € T, consider the subdesign d;. Let v, = IIm? and
let r; denote the vector of the v, factorial treatment effects in d;. The
intrablock matrix, A;, of d, is given by

A, = S*AS%, (2.2)
where
§*=5"®57°®...8 5", (2.3)
where @ is Kronecker product and where §7 is an m; x m; identity
matrix if z; = 1 and a row vector of m; unit elements if z; = 0, ¢ =
1,...,n.

Define T = {y:y €T, y; <z, i =1,...,n} and note that for each
y €T —T., P¥S* = 0 (cf. |[6], [8]). Hence it can be shown that for
a connccted or a regular disconnected design, d, the row space of A,
equals the direct sum of the row spaces of P¥§*', the direct sum beiug
over y € T,. Now defining

QY = (va/v)"/?P¥S*, (24)
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it follows that QYr, represents a full set of estimable orthonormal con-
trasts corresponding to a¥ in d; (cf. [2], [7]), for all y € T;. Since the
contrast matrix P¥ has the property that
PYS='S* = (v/u,)PY for y € Ty, (2.5)
(cf. [6], [B)), it follows from (2.2)-(2.5) that for y,z € Ty,
QYA.QF = (v/v:)PYAP™ . (2.6)

Therefore, if g > 0, the variance-covariance matrix of Q%7;, where 7,
is the intrablock estimator of 7, is given by o2 H,, where

(vz/v)(P*AP=")"1, if a* represents a main effect, (2.7a)
H: = (v2/v)[P* AP* — (P> APY')(PI AP )" (P AP¥)| 7,
otherwise, (2.75)

where PZ is a matrix whose rows form an orthonormal basis for ®V¥
where @ denotes direct sum over y € T, y # z. The fact that T, = {z}
when a* represents a main effect explains (2.7a). Note that by (2.4) and
the discussion preceding it, the connectedness or regular disconnected-
ness of d implies that of d; and hence, as in (2.1), the matrix inverses
in (2.7a, b) exist.

If the treatment labels in d are each replicated r times then the treat-
ment labels in d; are replicated r, = (rv/v,) times. The intrablock
estimator of a typical estimable contrast k' P*r, (k # 0), has efficiency
r=1k'k/(k'G.k) in d whilst that of the equivalent contrast k'QIr, has
efficiency r; Y k'k/(k'H. k) in d.. Hence using Definition 1, the design, d,
is efficiency-consistent if and only if r=1k'k/(k'G. k) = v k'k/ (k' H. k),
for all k£ # 0 and for all z € T, that is if and only if G, = (v/v,)H, for
z € T. Defining T(y) = {z : z € T, z contains exactly u unit digits},
it now follows from (2.1) and (2.7) that d is efficiency-consistent if and
only if

0 for z € Ty (2.8a)
(P=AP¥)(P*AP*')~'(P*AP*') = { (P* AP )(P> AP')~(P:AP*)
forzeT — T(l) (2.8'))

For brevity we shall denote the left and right hand sides of (2.8a, b)
as L and R respectively.
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Mukerjee [8] proved that the design, d, has orthogonal factorial struc-
ture if and only if

P*APY =0, forallz,y €T, z#y. (2.9)

In Theorem 1, we show that (2.8) holds for an n-factor design, d, if
and only if (2.9) holds for d. This extends the result of Lewis and Dean
(1985) to disconnected designs and proves the converse. The following
lemma is easy to prove.

LEMMA 1. Let M), M, be matrices such that M, is positive definite
and the row space of M, is a subspace of the row apace of M. Then
MMM}, = 0 if and only if M, = 0.

COROLLARY 1. L =0 if and only if P*AP* =0 forz € T.

THEOREM 1. An n-factor design, d, is efficiency-consistent if and only
if it has orthogonal factorial structure.

PROOF: Sufficiency. Assume that d has orthogonal factorial structure,
80 that (2.9) holds. Thus L = 0 and R = O for all z € T. Hence (2.8)
holds. (Note: This result also follows from [7] since it can be shown that,
if d is disconnected but regular, then a factortal treatment contrast is
estimable in d if and only if the equivalent contrast is estimable in d;,
—see (2.4) and the discussion preceding it.)

Necessity. Assume that d is efficiency-consistent so that (2.8) holds.
If z € T(y), then by (2.8a), L = 0. Hence from Corollary 1, it follows
that

P*APY =0foryeT, y # =z (2.10)

We prove that (2.10) holds for all z € T by induction. Assume that
(2.10) holds for z € T(y),T(2),---,T(g),» (1 £ ¢ < n) and consider z €
Tig+1)- If y € T and y # = then y € UT(,), the union being over
¢t =1,...,9. Reversing the roles of z and y in (2.10), it follows that
P*= APz = 0. Hence in (2.8b) L = R = 0 and from Corollary 1, {2.10)
holds for z € T, ). Hence by induction (2.9) holds.

THEOREM 2. The efficiency of a contrast corresponding to a* in d
cannot exceed the eficiency of the equivalent contrast in d,.

PROOF: The rows of PZ are a subset of the rows of P*, hence L~ R s
non-negative definite (see, for example, Kunert (1983, Proposition 2.3)).
Hence from (2.1), (2.7) and the definition of efficiency, the result follows.
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8. Partial efficiency-consistency.

Partial orthogonal factorial structure of order ¢ was defined by Muk-
erjee (1980), and a more general definition of partial orthogonal facto-
rial structure was given by Chauhan and Dean (1985). In this section,
we investigate the equivalence of such properties and their efficiency-
consistency counterparts. We consider only connected and regular dis-
connected equireplicate designs.

DEFINITION 2 (MUKERJEE (1980)): An n-factor design, d, has or-
thogonal factorial structure of order t if Cov(P*r,P¥r) = 0 for all y €
T, y # z, and all z € UT,), where the union is overi =1,...,¢.

Similarly, an n-factor design, d, is defined to be partially efficiency-
consistent of order t if the condition of Definition 1 holds for all z € UTY,,
for t = 1,...,t rather than fori =1,...,n.

THEOREM 3. An n-factor design, d, Is partially efficiency-consistent of
order t if and only if it has orthogonal factorial structure of order t.

PROOF: TFollows exactly the same arguments as the proof of Theorem
1 replacing z € T by z € UT(;) for ¢ = 1,...,¢, and using Theorem
2.2 of Mukerjee (1980) to obtain the condition (2.9) for z € UT; for
i=1,...,t

DEFINITION 3 (CHAUHAN AND DEAN (1985)): An n-factor design,
d, has partsal orthogonal factorial structure (POFS) with respect to a*,
if for a fixed z € T, Cov(P*r,P¥r)=0forallye T, y # z.

Similarly, an n-factor design, d, is partially efficiency-consistent for
a® if the condition of Definition 1 holds for a fixed z € T. Theorem 1 of
Chauhan and Dean (1985) provides (2.9) for a fixed z € T, from which it
follows that (2.8) holds for this z, (see also [3]). However the converse of
this result is not true, unless =z € T{y), and therefore in the most general
case it becomes apparent that POFS is the stronger condition.

DEFINITION 4: Tor a fixed z € T, and n-factor design, d, has
(i) ezternal POFS with respect to a® if

Cov(P*#, P¥f)=0forallye T - T,,
(ii) internal POFS with respect to a* if

COV(P";', Pvi‘-) =0 for all y € Tz, Yy # z.
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THEOREM 4. For a fixed z € T, an n-factor design, d, has exter-
nal POFS with respect to a® if and only if it has partial efficiency-
consistency for a*,

PROOF:

(i) Suppose that z € T(;). If d has POFS with respect to a*, then from
Chauhan and Dean (1985), P*APY' = Oforally € T, y # z. Hence
(2.8a) holds. Conversely, using Corollary 1, (2.8a) implies (2.10),
which in this case is equivalent to external POFS with respect to
a*.

(ii) Suppose that z € T — T(y). Writing P=' = [PZ', B. |', a straight-
forward multiplication of matrices shows that (2.8b) gives

L-R=Q'A"1Q=0
where
A=(PIAB]) ~ (BIAPZ)(PrABY )N (PIAP])

and where Q is defined in (3.1) below.

Now A~! is a diagonal submatrix of the positive definite matrix
(P=AP=")~!, and therefore A~ is also positive definite. Hence L-R =0
implies

Q = (P*APY) — (P*APZ)(PzAPZ) ' (PzABPT)=0.  (31)

Thus (3.1) provides an alternative definition of efﬁciency-consist:ency.
The variance-covariance matrix of AF = [#'B=,#P #P.] is
02(AAQ')~1, (cf. Mukerjee (1980)). Inverting this as a partitioned ma-
trix shows that Cov(P*7, I:’:?) = 0 if and only if (3.1) holds.

Note that an alternative proof can be obtained for Theorems 1 and 3

using an inductive argument when Theorem 4 holds for all z € UTy;) for
i=1,...,m where m = n and ¢ respectively.
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