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A local spectral sum rule for

in two di
)

is derived for the

jal ct L *"*{R%). The sum rule relates thei

all iesof the race

s 8T
of the ime-delay operator for a finite region £ C R’ to the contribulions in X of the pure point and

singularly continuous spectra.

1. INTRODUCTION

Speciral sum rules involving the time delay for a region
X of finite volume and the bound-state density for the same
region were desived in Ref. | in the context of classical scat-
tering. Here we rigorously derive the quantum mechanical
counterpart of these local sum rules in two Euclidean dimen-
sions {see Theorem 4).

We consider the quantum mechanics of a single spinless
particle in two dimensions. The state space is a Hilbert space
H'=L'[RY), in which K, denotes the self-adjoint extension
of — A describing the free Hamiltonian of the particle (with
# = 2m = |}. We shall assume that the potential v, describ-
ing the interaction, is a measurable function in £ */* (R?).

The total Hamiitonian # = K, + v will be defined by
the quadratic form method® and we write &', (4| and
¥, (H ) for the absolutely continuous and singular spectral

pectively for the self-adjoint operator H. Also
R, plH), and E [RS,piK,) and E° cespectively] will
denote the resolvent, the resolvent set, and the spectral
measure, respectively, for H {for X). The symbols 4, @,
%, and @, denote the linear spaces of all bounded,
compact, Hilbert-Schmidl, and traceciass operators in
& with |||, [l and |||, denoting the operator,
Hilbert-Schmidt, and trace norms, respectively. We
also set B,=[AcBolA AcB,}. Then onc has
B\ CHCBCB,CH. We shall use the factorization
scheme ulx) = Jolx]|'"?, wix] = sgn vixjulx), so that u, w
€ L% (RY),. The furst theorem collects the resulis relsting to
the definition of H.

Theorem 1: Let v e L **(R?).

(8) For every ¥* > 0, ulK, + y*) " end wlX, + )~
belong 10 B ,.

{b) The total Hemiltonian H = K, + v, defined as 2 qua-
dratic form on D {K %}, the domain of X 3, can be extended
&5 the quadratic form of a self-adjoint operator, also denoted
by H, which is bounded below. Also, D [|H |'%) = DIK ).

{c) For every z € C — | O}, the integral kernel 4 {z)(x, 3}
(xR O[x, yuA y)defines 8 &, operator, alsodenoted 4 (z),
which is 4, holomorphic in the open-upper- and lower-half
planes separately.

{d} [|4 (z}]];—~0 as |z]— o, and A {z) has boundary values
in &, norm as z—2 4 i0, uniformly for A in every closed
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subset of R — (0],
le}Forz e piff 1 p (Kol [1 + A ()] 'eF andonchasths
second resolvent equation

R,—R%= —R%uw{l +4[5)) "' uR®. 1

Furthermore, the function z—{1 + 4z} ™' is @ holomor-
phic in the open upper- and lower-half planes.

Since many of the calculations are standard we only
skeich the proof.

Proof: The Green's function for the free Hamiltonian i
ROx, y) = [i/8) HY (J|x — y)). where HY" is the Hanke
function of the first kind, and where we have chosen me‘
branch of the square root so that Im |z > 0. Using the bound.

1834l <cola| =" e 7tme, ]

for all @ € C — |0} with Im a>0 {see Ref. 3, pp. 962 and
963), we have that for ze C — (0},

el = | [ ds bl 1l

[ izl o)l <l
<’6|z|ijdxdy S N ]

=yl "l

by an application of the Sobolev inequality’ in R*.
proves{a)and paris of {c}and {d}. The &, holomorphyofd
follows by writing

AR =uKo+ )" [+ +XRT)
X (Ko + 37"

and observing that while the middle factor is clearly 3 holor
morphic, each of the other two arc B .

Part (b) follows from (a) on using standard resuits og
quadratic forms,*** The existence of boundary values un
formly in A is the consequence of n application of the domw
nated convergence theorem and the estimate (3). The resod
vent equation (1) can be established asin Refs. 20r7. L

Saattering theory for such a system can be developed
along standard lines and the next theorem summarizes %
Jesults,

Theorem 2: Let vel*” (RY). Set & =|0jud
eRN[O} + 414 +DYor S + AR —D)isnot 1-1].

{a) & is aclosed and bounded set of Lebesgue meature 0

fb} u is K, bounded and w is H bounded. Funthermore
uEY and wE, are Ko and H smooth, respectively [see Refs. !
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Wad 8 for the definition of smoothsess), whero A la any half-
Keninterval in R — &,
) The wave operstors
0, myhme* e,
[eres
»od
W, E,_,melim &'e" g,
pre
Toe scattering system defined by the pair [}, X,) is
plotically complete, i.e.,
Rangefl, =Range 0_ =¥, (H)=E, ., ¥,
Wi ¥ (HICE, ¥.
Sketch of the proof: Asin Ref. 5, p. 364, the observation
1 {41 £ 0} ,~0 85 |4 |~ <0 and an application of the
ytx Fredholm theorem gives us (s). For {b), we use the
Ivent equation (1] wod note that Il + A4 4 + igl] ~'|| is
nded, uniformly for A€A and 0<7< 1. The part f¢) then
follows by an application of Kato-Lavine theory (Proposi-
000 9.16 in Ref. 5} 8]

DL TIME DELAY AND A TRACE THEOREM

Following the ressoning in Ref. 9 we sce that the expres-
Kion

S I O W ARy

formally descnbes the time delay in the state f€ ¥ for the
repon EC RY, where we have written P, for the orthogonal
projection defined by multiplication wiLh the charscteristic
fanciion y, .

Let ¥ omL YT}, with (-,"}, denoting the inner product
and where T is the unit circle embedded in R?, and let %
LR}=L ([0.00 ). &y be the spectral transformation {see
Ref. S for derails) for the free Hamiltonian X, so that
1o Kofty = A{%f), foraa. 2 €[0,0) and for fe D|K,).
Then one has the following theorem describing the proper-
tes of 7 (sec Theorem 2 1n Ref. 9}

Theorem 3: Let K, and H be us described in Theorem |,
104 ket I be 2 measurable subset of RY with finite Lebesgue
measure, i, |X) ¢ . Then we have the following.

(1P, RS and Py R, are both #, operators for every
cepiynplKy)

) Set o =| XA~ ({2 /) o is » bounded func-
toa of bounded support in {0, )|. Then @, is dense in ¥
and there exisis.a unique measurable family Q4. 2) of trace-
1 B i a3 the energy-shell time-

e in ¥,

delay openator, such ;ll
f5)= L 1% /L QUINT o ko,

forevery fe @,
[} Denoting gid. 2} = tro Q4. ), the trace of Q12,X) in
' one has furthermore that

'["Aﬂ,f—’]'uu. “
fﬂ“'—f",a 220wRT (08 A0, — P RS,
®

my
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ad
L 1
;L 3ln L diaup, i, B - KO,

0]
foreveryzep (H|np (K,

‘The function g{d, %) is interpreted as the average time-
delay function of energy A for the region £.

Proof: Since |E| < w, it is casy 10 sec that Py R%D,.
This combined with {1} proves that Py R,e#,. Pant (b is
proved as in Ref. 9 by using the intertwining relation and
noting that

RT[0% PO —P)RI=0C RIPR, A,
~RT PR

isa 3, operator. Equations (4) and (5] are consequences of

this as in Ref. 9.

Using the cyclicity of the trace, the asymptotic com-
pletencss of 1, and the resolvent equation, we write
wRT (0 PO, —P RS

=uR}P RN, 0% —uRTP RS

=P R E R -RIR)P

=l=0" wP|{R, - B) £, —(RT~RS)| Py,
which leads 10 (6).

Mll. SUM RULE

A spectral sum rule for the lime delay ¢f-.2}is derived in
this section. It 1s convement to introduce s standard nota-
tioa* for the Fourier transform that maps L * (R} {1 <¢<2)
into its conjugatespace L 7 (R*)(p~" + ¢~ = 1), The Four-
ier image of an element feL*(R"} will be denoted by
J& L7 (R, With this notation our main result may be stated
as follows.

N "

T LYORY
and let £ be a measurable subset of R? with finite Lebesgue
measure, e, I < .

{ii) Assume, furthermore, that 7y € L '(R?). Then the
function g(-,Z): [0,0}<R has a Binite improper integral

[[mvatain [(una.
which saishics
J"N&I)d&=—lruP,E,F,—% s M
o t 8

Theorem 4 is demonstrated by breaking the proof into
three propositions. The basic idea is to apply Cauchy's inte-
gral theorem to the holomorphic function z—uz Py (R,

—R% P + Py RIuRY Py on a swtable contowr in
plH n piK,). Propasition § determines the real ais contribu-
tion of tr Py (R, — R%) P,. The second factor proportional
tovis the Born term and its real axis contribution is found in
Propasition 6. Finally the large radius contribution of both
terms to the Cauchy integral is described in Proposition 9. ln
Propositions 3, 6, nd 9 the set £ is defined 10 be 2 measura-
ble subset of R

Osvomeral m?



Before proceeding to these propositions it is heipful to
identify the region in 2 {the complex energy planc] where
Bom dominance prevails. Let I be the canonically cut plane
composed of the complex plane with the non-negative reals
removed, Theorem | {d) shows that A z), zefl, has & ,-noma
continuous extensions to the real exis from either above or
below. For pasitive reals thesz two extensions are different.
Take [T, 1o be the closure of the canonically cut plane which
maintains Lhe distinction between the two possible boundary
values along the pasitive resd axis. The large z bound for
|14 i2)]l, allows the following definition of A, < .

Definition: For each 80,1}, let A, be the infinum of the
set

[AeR | J41ll;<8<), Vzell, with |25 Aj.

In the Born dominant region of [1,, i.c., [z] > A, it is
evident that [1 + A4 (z)) ™" is 8 bounded operator on ¥ and
bas norm bound [|[1 + 4 (2))~"[|<[! — 6)™". Thus for each
8e{0,1), & iscontainedin [ — A,, A, ].Our first proposition
describes the bebavior of 17y 1m [R,, 0 — RS, 4] Py
on the finite intervals of the real axis that contain .

Proposition 5: Suppose ve L *"* {R?) and |£| < w. For
every finite interval (0,8) 0 [ — A,, A, ) D8, 15650,

i [(dhr, 1 Ry~ RE,u)
-0 ),

=%£q[l.2]|ﬂ+nn‘}’xh‘,h4 )

Proof: Taked > 0. Theorem 2 (a) and the resolvent equa-
tion (1) for R, implics that Py Im R, , , PL €% . The spec-
tral decomposition of ¥ = ¥, & ¥, (with the associated
orthogonal projectors £, and E, ) leads 10
UPyimR,, 4Py

=tuP ImR,  yE. Py +uPyImBR,, 4 E Py
Thus (for §> 0) the left-hand-side integral in (8] is the sum
I, +1,, where

I..(5l=JJﬂerx Im R,y Eu —RY,u) P,

I,(5)=fd.{ wPyInR,, 4 E Py

First, consider the 5—0" limit of /,,{8). Theorem 3, Bq.
{6), gives us the representation

1 - 5
o= [ar [ a3 B

The elementary d4 integral can be written in cither of two
equivalent forms:

R RS Lol ST el
.[‘a(y—ll)-fﬁ" e ] +un §

- Bb-d
{p—pufp—p)

(19
1f26<b—atherootsy, arereal, givenby Ju, =4 +a
+ {16 — af — 451", and always fall inside (0, b). Specifi-
cally, p, =b—¢€, andp_ =a+6_, where e, —0* a8
8—0. The inequality {tan " | < [k and estimate (4) suffices

=tan
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10 establish that the double integral in {9) is absolutely con
vergent. Fubini's theorem aliows a change of integration o
der whereby [9) becomes

L
1..(6)—2"J; du gl %)
b=pn g —a
x[un — tmo “—6 . m

Treating the 2 > 25 and the i« < 25 conlributions to inte:
gral {11) separaicly leads 10 the construction of a 5-indepes-
dent L ' (d u) mejorant. For0 <6 < | andyu > 26 a majorizing
function is |g{ . Z)]ib — all{ s — b X ps — af] ™', whereas fo
04u<2b the bounding function is 7|q{ #.X)|. Theorem J,
estimate (4), confirms that this majorant is L' (4 u). Domi-
nated convergeace now applies to (1] yielding

im l,‘(b']:lfdyq(u.i). "
&0° 2

1t remains to investigate the fimit of 7, (5). A useful inter-
mediate result is the following. Suppose [C, | 15 a sequence
of operatorsin & converging suongly to C. [ 4, Be B, tben

lim trAC, B=1r AC8. k]

{Se¢ Ref. 5, Lemma 8.23.)

Recall o, (H)C ¥ Cla, b ). Since £y, Pre@,, itloh
lows thet E, Pre®, The function [a,5]3/
—Im R, , 4€% is & -norm continvous {for 5> 0) and hxs 2
B -valued strong Riemann integral on [a, 4], Likewse the
map [0,6]94—Py E,Im R, 4 E, P1€%, is F -norm
continuous and so A—tr Py £, Im R, _ 5 E, P; basanor-
dinary Riemann integral on [a, & . By the definition of these
two integrals, the linearity of Lhe trace, and (13 it foiows
that

L)=uPy E, [J‘d/l lmR‘,,]E, Py 1]

Neither a nor b are cigenvalues of H. The strong Rse
mann integral of [m R, , ,; gives the standard result (Ref. &
p- 360}

s-ljm'rdlllmkh,,=ﬂ5,‘,,. i3
o ),

A second application of {13) together with {15) controls e
6—0* limit of {14),

lim [ =wu P B By B P =au by £ Ay
Proposition & Let ve L*? (R?) and suppose that )
] < co. and (i) 3F€L " (R}, Then for a< — A, wih
fe(0l),
lim lim /(5.5
sm 0"
=lim tim | & 9. RS
.h_“:m'[‘ WP Im(RY, 4 vRY, 4Py

o

Proof: Note that as in the proofof Theorem |, Eq. (). we
bave [P R, u ulla<eld | =7 [c independent of d aad S,

Qubom oot m



VPR Im(RE, yoRY, 4| Py

(PRI, oWRY o Py =Py R _ 5 VRS o Py),
§¢every A %0 a3 6-0°, and that Py RS, o RS, o Py
2Py RY . R o Py.for A <0. Thus by an spplication
¢ the dominated convergence theorem,

2 1150° jm lim 11b.8)
Jim

=fuurr,nz..m2..n

=P RY o vRE_ o By} 6
Upon writing

SR ooRY . aPr - PR guR o Py

=P R}, ouRY, o~ RS alPy

*PURY. 0 —RE_oWRY o Py,
and observing that the trace of the product of two B, opera-
tors can be evaluated as the iterated integral of the associated
1. * kernels (see Ref. 10, p. 524, onc has that the integrand in
Nnéyis

(o[ (RS0 + R sl

XaAA[RS .0~ RE_ o]l piratal
where we have abo used the fact that RS, oix.))
=RY, oyl

Notethat RS, obx. §) = /4] H3WZ [x — yli for A 50
, nd then the choice of the branch of 2 leads to RS _ o, »)
= 4/8) HEWT 1x - yl) so that

(RS, 0+ R o] sl= = NT Ix =5
#nd
IR0 = RY. olimsi= 2l b= 4
where J, and N, are the Bessel and Neumann functions of
order 0. Thus
v60)= & [ [ desin [ 00Tl

XNy VT [ =yt 1.
Denoting 5, (x) =, (bxl) = — (174) JA fxf) Ny x])

for & >0, we can rewrite this as

um.u'1=£ujdmulfdyx.u—mn

=£-ﬂf¢mwn'vm o

where we have written [ yy svix) = § yy(x + yiul y) dy and
also noted that the above integral converges sbsolutely by
the estimate ()5, [x]| <c|x] ~*). and by an application of the
Sobolev inequality so that Fubini's theorem can be used.

From Ref. 3, p. 673, formuls {6). we note that the im-
proper Riemann Fourier 1ransform of 3, exists, i.e.,
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1 —aa
—_— dx
r™ Imof uix

= £ [ Wk T paiT &
convergeapointwise 0r0 < [k | # WX 181-+-o toa function
i, wil
#0<k| <2d,
ﬂ/-)lkl"l*‘ “pm, IfNT(Ikl<m

k=L

Tt is ckar that §,€ L? {R") with | ¢p <2 and thus by xhe
Hausdorff-Young theorem (Ref. 6, p. 11)its inverse Fourier
transform 7 = §,e L ¢ (RY) with p™' + ¢~ =1 and fur-
thermore & = is & continuous lincar mep from L” (R?) into
L *{R). AL inthel * impli
vergence pointwise almost everywhere for w subsequence
(Rel. 4, p. 18) we conclude that the improper Riemann in-
verse Fourier transform of 3,,

m = [ ek,

Hem 27 Juion
if it exists, oquals (¥ ~* 5, )x) ae. That this improper Rie-
mann integral exists and is equal to s, {x} is the formula [6) of
Ref. 3, p. 682. Thercfore, by Lemma 8, Eq. (17) reduces to

ul(b.o~1=£ajs,m1fmkwk

=3¢ [ [nkipn-can 09
where we have observed that since yy€ L* (R, (7 *okk)
= 2wy kB — k).
An elementary integration shows that

Sk ;-z,fi,(k WA
_d [ ifo<kl<2yB,
TN - AN 2 F )

Siooe [, (k) = — i3, (K}, it foliowes that

f"nl*"ﬂ - -ifi.ww= - o Skicte

for all [k | > 0, and recalling the hypothesis ¥, vl |, we can
apply Fubini’s theorem 1o (19) and obtain

2115.0°) = | 3tk iga (k) - kidk. 10}

Note tha1 5, converges t0:/2 paintwise forall | | > 0as
b0 and that |5,{k JI<{. Therefore, we appiy dominated
convergence 1 [20] 1o asmive at

tim 160%) = [ i - b1 @1

leﬂymlwhunonoflzmmlhollllpvu(huequind
result. [m]
Lemma 7- Let $& L {R*) for some re[1,2) and fe L?

nL'[R%, where r~' 477" = 1. Assume furthermare that
$jeL' (R Then
| st = Sz ©)

Oebom st st e



Proof: See the Appendix. a
Lemma & Assumev € L *”(R?)and |Z| < w. Lets, and
§, be as defined in Propodition 6. Then

[ttt = | @)

Proof- Set ¥, and f={ o0 and utilize Lemma 7 with

R" = R?snd 7 = §. As noted in Proposition 6, 5, & L */. The
function f'is the Fourier ransform of s convolution and is
proportional to the product 7y [k ¥ — k ). Because ¥y L?
L= and e L* we have from Holder's mequality that
JeLnL* It remains oaly to verify thal the requirement
ifeL is met. Both {5 svand yysvarein L *and thus a.c.
Jixi =gy 0 = x}. Smocne L' andve L*? it follows that
J€ L' Finally, s, € L *, s0 Holder's inequality implies $
eL'

Observe that ¥{x) = 5,{ — x} and that both 5,{x) and
£,k ) have purely imaginary velues. Thereby, il is seen that
(23), with ¢ = 3, and f = {1 %0, is equivakent 10 the idenua
{22).

For 4> A,, define a large radius integration contour 10
N by Cb)= |zl 2| = BTF and |Imz|>5 if
Rez>0]. The contour integral over C,lb} will be taken in
the conventional right-hand sense.

Proposition 9: Supposc ve L ** (R”) and {X| < oo. Then
lim lim uP,[R,-—R‘,’+R‘,‘vR‘,’]dez=O.
80" Jegs

24

Proof: The identities (valid for z€I1,, [z} > A,, 1> 8> 0)
N+A@™ ' =1-A@+4l) - A1+ 4]
and R° vR Y = (R 2w)uR ), when combined with {1}, give

1)
P IR, -RV+RIWRI) P =T Kia)
=
where
Kylz) =Py RIwAEP(1 + 410} R Py,

K =(—1*"P; ROw[A()) R Py, i=12

Consider the K, contnbution first. If we take the polar
representation of z = |z|exp (i¥}, ¥ [0.25], then 26C,(b ) re-
quires$<¥<27 — @, whereian ¢ = § /b. Bound estimste (3}
is of the form [ (), = Olz] ') Since ;e L** (R}, a
similar Sobolev estimate shows that both [|P; R Swf], and

{luR ¢ Pg|; decay like O/|z|~'/*) for large )z|. After noting
that [[{1 + 4]~ "lI<(1 — 8}, one finds

|fmu1<,wx|

=4
m [u" Ve ol 23)

where ¢ is the constant arising in the Sobolev estimate. The
right side of (25) vanishes in the double limit 5—0°, b—c0,

The analysis of the contribution of both X, and K, 10 the
limit in {24) is similar, so we shall restrict the discussion lo
the K, term. The operstor K, is the product of three &
operators, so tr K may be calculated as the triple iterated
integral of the kemels associaled with these Hilbert-
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Schmidt operators [Ref. 10, p. 524). Upon using estimate {2)
for R%x,y) and setting [ =82+ 5%"" we have, for
€ C,ib),

e K< 75z | dxat [ [ an o

oy Myl
b=y =l Pl - 2

where 7= {x = | + |y, ~ yi| + Iy, — x]. Doing be |drf
integral along contour C,(b ) gives the bound

L. he kol s <20 [ [ [ ey,

o abeltyll )
=l = Pl
L]

where the fact that the integrand is non-negative has been
used to justify changing the order of integration. Clearty f
the triple integral in (26} is finite, then the b co, 80 fimit
of the K| term in (24) vanishes. The Bniteness of ths tripk
integral follows by the inequality r>|x -y
4 = %2l 2y — x| together with Schwartz inequality lo
bound the dx integral and the Sobolev inequality L0 estimaie
the dy, dy, integral. ]

Proofof Theorem 4:Forz € p [H | 0 p |K ) define Pl d
by

zjmP; (R, — R+ RIWRS) Py
From Theorem 1, Eq. (1) it is seen Lhat & may also be repre-
sented as

Oh = (P RIWM LI+ AL~ WRT Pl 10
The outer two factors on the right side of (27) are #; halo-
morphic in p{X ) while I1he inner factors are nom holomor:
phic in p{H |. 1t follows that z—®iz) is trace-norm holomos-
phic on the domain p{H }np (Ko}

Select a and b such that 2,6 ]D[ — A, A, ] for som
0<8<!.Forfixeda, b, and § > 0 choose  closed contour in
the canonical cut planc [ 10 be CrmCyla)+C, b4

+ C,lb), where C,(b ) has been given above and

C, (b8} =Nz =4 £, Aclapd |}

Cyla)=|relljz=a+in. el -85]].

Define a holomorphic function on p{H 0 p [KJCC by set-
ting h [z} = tr ®fz). Cauchy’s integral theorem asserts that
the C, conlour integral of A (z) vanishes. Specifically, for
each§50,

Ir ’l(¢+lﬂ)dfl+J hindz
-4 Caid)

+ur1mnu+m-u [

X

Consider that 6—0* limil of the iyt integral in (281
Use {27) to rewrile the argument of tr ¢. After applying the
Sobolev inequality (o estimate the [-], nora of Py R
Alz), a0d &R Py, and vsing [[[1 + A @) 7'<0 =6} u

Osbom ol 8. o



Bowififa< —~ A) that [kia + i)} is uniformly bounded

1% Thus the iategral /2, Alo + in)dy vanishes as 6—0°*.
Now take the 5—0°, b— o0 limit of identity {28). The
itag valuc of the middle term ia determined by Proposi-

mkmhvwmﬁm

mgfuhu+m=a )
ff <
estiog he result of Propositions S and § nto (25) yields
--;J:wx.zw”ur, B, Py +%'[ wix)dx =0,
A

Hare. the second ad third fectors are both finite. This re-
s b

o [[wm

B

¥ fais; i, the improper integral of A—gid,Z) nmﬁ
m

V.DISCUSSION

We cooclude by making & number of remarks concern-
g Lbe spectral sum rule.

[1}Consider the behavior of hypolhesis (ii) in Theorem 4.
Thecoodition (il) acts as & joint constraint on v and £. Given
1ixed se1 X, {ii) restricts the choice of u; or given 8 fixed
reL . [ii defines an admissible class of sets ZCR™ Two
cumples llustrate how (ii) works. For every ve L */%, one
aafada X such that (ii} is valid. Suppose X is a reclangle.
™€ L, and furtheremoare, since bl *, Holder'sin-
equity implies #f,.,€ L '. On the other band, hypothesis
aeed not be Fulfilled by alb pairs (4, 5) allowed by (i). Let £
beadisk Then f,, € L ** L =, In this case, if the poten-
wicissrsrestrictedtove L 4> n L4+, then (i) will be satis-
idfor the disk. Finally, we observe that if the potential class
sfwnbernarvowed tow € L “% 1 L 2, then (i} is obeyed for all
Swith |5 < .

(2) 1t is ofien desirable to separale the contributions of
the point spectrum and the singularly continuous spectrum,

Theorem: Let (1 + [x{pixeL (R?). Then & has no posi-
tive eigenvalues.

Thisisa verzion of the more general results
obtained by Froese eral.”

(4) For any | 2| < o, Remark {1) shows the spectral sum
rule identity (7) is valid for all v€ L*"*n L *. The potential
class * n L *does not prohibit the appearance of zeto ener-
By resonances {sec Refs. 14 end 15}, For example, if one var-
jes vin LY nL? by changing the coupling constant it is
possible to introduce ze70 energy resonances in Lhe scatter-
ing system. However, Lhe local spectral sum rule {7) [takes
the same form {7} forallv € L */’ 0 L 2, and so] s structurally
insentitive ta the presence or absenoe of & zero encrgy reso-
nance,

(5) Global sum rules (Levinson's theorem) obtain if
X = R A result of the litersture that is closely related 1o the
spectral sum rule in Theorem 4 is the R’-Levinson theorem
derived by Cheney." Let Sk} L} T )L 3T) denote the
energy-shell S-matrix operator, where [£ | = yZ >0. Then
for a potential class that prohibits {1) the singularly contin-
uous spectrum, (2) non-negative cigenvalues, and (3) zero-
energy resonances, it is found that'®

1[log det S{0) — log des S [e)] = -mv-lf i,
2w

where ¥ ia the number of negative energy bound states.

For scattering in R? the effect of zero-energy resonances
on the form of Levinson’s Lheorem has been discussed sever-
altimes. """ 1n a notation analogous fo the sbove, Newton'”
finds

aol—g-:[mu £ o] = ,(~+_q)

whered tk )isan

for Lhe S matrix, In{det Sk )) = 216()(] The factor ¢ = 0,1

there are no zero-cnergy resonances, and ¢ = 1, otherwise,
Here N is the number of zero-encrgy and negative-caer-

Sappost | ¥, isthe family of i dent L *[RY eigenf

BY eige It is this type of gy resonance
i of Levinson's global sum rule that does not

oous of H baving eige A, and Il
=1 These eigenvalues zlways lie within the interval
[ -As. A, ] and may assume nejative, 2¢ro, or positive val-
vt The family |, may be empty, finite, or infinite. [fn
parucalar, the assumption vel. */ is not known to rule outan
mhaiie number of posilive eigenvalues.) The spectral sub-
puce decomposition £, = E,, + E,, implies

uP E Py = zJ; Wix)dx + e Py B, Py

13 Various sufficient conditions on v are known 10 co-
sure the absence of the singular continuous spectrum and of
the positive point spectrum of H. We quote only two repre-
seaative results.

Theorem: Let {1 + x|Ifxle L *°(RY) + L = (R}, v> 1.
The ¥, |H } = |0]. Furthermore, there are 8 finite num-
ber of positive ¢i of H with finite iplicity in
very compact subset of (0, co}.

This result follows from both time-dependent Enn—

y'" s well s from ti theory,?
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occur in the local sum rule of Theorem 4.
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APPENDIX: PROOF OF LEMMA 7

Set ¢{x) = (27) " exp (— x*/2) and for every €>0,
$lx}=€""¢ix/e) so tha fé,x)dx=1| and
#ulk )= (29) " expl — k'€'/2). Define

pir= [ e ndindy= [ e+ ordnd. oo

Qebom et &t a0



Note that ¥,eL’(R") and ||V}, </¥li,. Since the map
A—s)d |'isconvexon R * for r> 1 and since § §{ yldy = 1, we
heve, by Jensen's inequality'” and (30),

=Wl = [0 = e s
<f ax [1o + 01— wair sy
= [T, = 1 4.

where (7, ¢}x] = ¥x + ).

Now 7, y—¢ in L’ norm as 0" for every y fixed.
Furthermore T, is an isometry. Therefore, by dominated
canvergence one has that || — ¥, ]|, —0 as e~0°. Since
¥, € L [R") by Young’s theorem (Ref 6, p. 28), we have by
Plancherel's theorem that

| o= [ B e o

The left-hand side of (31] converges to f m/[x)dx since
lI¥, — w|| —0as e—0° and smoc/EL (R} On the other
band, ¢, (k) = {21 k19,0~ k] = Gtk Je =ik}
potntwise and |w tk )|<w4k 1} so that an application of the
dominated convergence theorem ta the right side of (31)
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along with the hypothesis ¥/ L ' (R*) leads to the onginal
result, a
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