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ABSTRACT
This paper develops an approximate theory for D- and A-optimal
statistical designs with a circular string property. It is shown how
the problems of deriving optimal designs can be reduced to non-
linear programming problems involving small numbers of decision
variables. The results are seen to be helpful in dealing with the
exact design problem with a finite number of observations.

1. INTRODUCTION
A statisgtical design 1s said to have the string property if the
design matrix be a (0,1)- matrix having exactly one run of l's in
each row, The problem of finding optimal designs with string property
has been considered recently by Sinha and Saha (1983), Mukerjee and
Huda (1985) and Mukerjee and Saharay (1985). Sinha and Saha (1983)
indicate various applications of such designs in a number of fields.
The present paper deals with a variant of the string property, namely

the circular string property.
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Consider the standard linear model
Y =2XB8 + ¢, E(¢) = 0, Disp (g) = 021, (.1
where Y is the observational vector, X is the design matrix, B8(px1)
is the vector of parameters and 02 > 0. Let the p positions in each
row of X be labeled 0,1,...,p-1. Then a design will be defined to
have the circular string property (CSP) if (i) the entries of X are
Oor 1l, and (ii) for i = 1,2,..., in the ith row of X, 1's occur in
positions labeled ui,ui+l,...,ui+vi for some LI where 0 < Uy .V,
< p-1 and addition is reduced mod p. The condition (ii) essentially
means that there is exactly one 'circular' run of 1's in each row
of X. As an example if
0011
1101
X=(1001
0100

01110

then the design has CSP with p=4, “1=2' v1=1, u2=3, v2=2, u3=3' vy=
=1, v4=0 and u5=1, v5=l.

Designs with CSP may arise naturally in many practical situa-

1, u,
tions. For example, suppose interest lies in measuring the consecu-
tive distances, along the circumference, between p objects fixed
along a ring. Since the measurement of the distance between any two
objects automatically takes account of the intermediate objects, the
resulting design matrix has CSP. Yet another example arises consi-
dering the problem of measuring the lengths of the sides of a convex
polygon. These examples are quite general in nature and cover many
particular practical situations especially in the fields of biometry

and industry.
Under the model (1.1), this paper derives D- and A-optimal

designs with CSP for estimating E. An approximate theory, following
the line of Fedorov (1972) and Silvey (1980), has been developed
which is seen to be helpful in dealing with the more intractable
design problem with a finite number of observations. It may be
noted that the designs considered here have a close link with spring
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balance weighing designs (see Raghavarao (1971), Banerjes

(1975) for a comprehensive list of references).
2. PRELIMINARIES

Let § = {(u,v): O<u<p-1, O<v<p-2}U{(0,p-1)}. For
{u,v) € 8, let Euv be a p-component (0,l)-vector with 1
at the uth, (u+l)th,..., (u+v)th (mod p) positiomns. In
particular, Eo,p—l is the p-component vector with all
elements unity. With p parametexs and CSP, each row of
the design matrix must be the transpose of one of the
vectors huv' Let X, the design space, be the set of vec-
tors Euv’ {u,v) € S.

Following Silvey (1980, p. 15), let H be the class
of probability distributions on the Borel sets of X. Any
n e H will be called a design measure. The finiteness of
X implies that any such n defines a discrete distribution
over X assigning a mass "uv' say, at ﬂuv' {u,v) € S, For
n ¢ H, define the pxp information matrix M(n) = E(x x'),
x being a random vector with distribution n. Let T =
{M{n): n € B} and ¢ be an extended real-valued function
defined over the class of pxp non-negative definite mat-
rices and bounded above on I'. A design measure that maxi-
mizes ¢{M(n)) over H will be called ¢-optimal. In parti-
cular, for D- and A-optimality one takes

${M(n))} = log det M(n) and

et} = - er{u(m) ™Yy if M is (2.1

positive definite,
= - = otherwise

respectively.
In a similar setting, Mukerjee and Saharay (1985)

and Mukerjee and Huda (1985) applied the technique of
Fréchet derivative (cf. Silvey (1980, p. 19)) in obtain-
ing optimal designs. But a successful application of this
technique requires some guess about the optimal design
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which appears to be extremely difficult for the present
problem. Therefore, as an alternative approach, we first
reduce H to a much smaller subclass containing the D-
and A-optimal designs. This subclass will be seen to be
much simpler to deal with. The reduction is achieved
through a number of theorems as follows,

Theorem 2.1, Let Hl be a subclass of H containing only
the design measures for which

=7 Sel.= T (0<v<p=2).

Tov 1v p-1,v
Then a ¢-optimal design measure in Hl is also ¢-optimal
in H provided ¢ is concave and permutation invariant.
Proof. Take any n, € H such that the probability masses

. R o -
distributed by n, are W o, (u,v) € S. Let Ny be a design

v
measure for which

_lp—l o o

m = P <u<p- <v<p- =

v P wloTuv (0<u<p~-1l, 02v<p-2), no,p-l ﬂo,p-l’
Then n, € Hl and

- _lp-l [
M(n)) =p " I RMNIR, (2.2)
u=0

where R, = Ip and Rl""'Rp-l are cyclic permutation mat-

rices of order p. If ¢ is concave and permutation invari-
ant then proceeding along the line of proof of Proposi-~-
tion 1 in Kiefer (1975), it follows from (2.2) that
Q{M(no)} < ¢{M(;;)), completing the proof.

Since by (2.1) the function ¢ is concave and permu-
tation invariant for D- and A-optimality, attention will
hereafter be restricted only to the class H. in view of

1
Theorem 2.1,

3. FURTHER REDUCTION
For any design measure in Hl let 8yel be the common

value of “OV'ﬂlv""'"p-l,v (OEYEP‘Z) and “p = "0 o-1°
Clearly, !

) +a_ =1, (3.1)

a,+...40
! p-1 p



OPTIMAL STATISTICAL DESIGNS 1619

To achieve a further reduction of the problam,the cases
of odd and even p are congsidered separately. In the
sequel, the pxp oclrculant

Bg By ew by

will be denoted by (be'bl""'bb-l)‘
considering first the case of odd p, let p = 2m+l.

Then for n € H, it may be seen, after some simplification,

1
that
M(n) = {ag,ageeciaj,aie.a,al,
where
2m
a, = I ua + Somel’
u=1
Zm-3 2m
a, = I (u-jla_+ I (2u-2m=-1)a_ + a
b] s mome u 2m+1
u=j+l u=2m=-3+1 (3.2)
{12i<m-1)
2m
a = I (2u-2m—1)u“ + LI
u=m+l

Hence the eigenvalues of M(n) turn out (cf. Rao (1973,

P. 68)) as linear functions of Gpoevssly gy 28
2m Py
A, = I u‘a_ + (2m+l)a N
0 .t u 2m+1
3.3
n u=-1 ¢ !
lj = E[lu+2 I (u-r)cos(Zrﬂj/(2m+1)}](u“+62m+1_u)
usl r=1l
(1ej<em).

Theorem 3.1. For p = 2m+l, let H_  be a subclass of Hy

containing only those design measures for which a

1%

=g =0, Then a D-{A-)optimal design in HQ is algo

=a
m - 2m+l
D~(A-)optimal in Hl and hence 1in H,

Proof, Consider any ny, € Hl such that the probability
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(1)

masses associated with n, are a (1<u<2m+l). To avoid

(1)
trivialities, let %omtl

singular and one can easily identify designs in H° domi~

< 1, for otherwise M(nl) becomes

nating ny in terms of D- and A-optimality. Define n, e Ho
such that the probability masses associated with n, are

u(z) where

(2)_  _ (2)_ (2)
ul T e e= n —02m+1
ENN
u

=0,
(1) (3.4)

(1)
o 2m+1

(1)
(uu + 2m+l=-u

)/ (l-a ) (m+l < u < 2m).
(1)

Oyl and

For notational simplicity, let a =
2m
c= I u
u=m+1l

2, (1), (1)
(uu +u2m+1-u)'

Since the uél)'s satisfy (3.1),

P E FE SR (3.5)

2m
c 2 (2m+l) T (= 2m+leu

u=m+1l
Denoting the eigenvalues of M(nl) and M(nz) by le and
Aj2 (0<j<2m) respectively, it follows from (3.3), (3.4)

that

2m
AOl = 3 uzu(l) + (2m+l)a < ¢ + (2m+l)a,

=1 u -

v {(3.6)

-1 .
on = (l-a) "¢, Ajl = (l-a)kj2 (1<j<2m).
Hence by (3.5),
-{2m+1)}
det M(n,)/det M(n,) > [c/{c+(2m+l)a}](1-a)
> (1+2ma)”t(1-2)72" > 1,

proving the assertion regarding D-optimality.
Considering now the proof for A-optimality, which is

slightly more involved, note that for n ¢ H tr{M(n)} =

(2m+1)a° and hence by (3.2), (3.3),
2n 2m ()
L A,, = tr{M(n,)} = A . = I u(2m+l-u)a
j‘l jl 1 0l u=1 u
2m (1, (1)

= I u{2m+l-u) (a +a
u=m+l u 2m+l-u

1’

)
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2m
< E uz(u(1)+u(l) ) = ¢.
u=mel u 2m+l=u
Hence
2m 2m
-1 2 -1 2 -1
LAY 2 (2m) (L A.) > (2m)“c
jm1 31 jm1 31 = @-m
By (3.6),
ex (i)Y 1ertin 1 7h
- 2m _ 2m
< (-a) (e 2T/ Hes @menya) Tty 1 aTY
A3 je1 3 . 31
i=1
since the right-hand member in the above is non-increas-
: 2 - :
ing in zj:1 Aji' it follows from (3.7) and then (3.5) that

er Ui )3 N /ertimin )Y
223 2., L -1 2 -1
(l-a) (¢ "+4m“c ")/ ilc+(2m+l)a) = + 4m°c
(1-2) (1+4m2) / ({1+ (2m+1rac 217 + 4n?)
(1-a) (1+4m?)/ [{1+(2m+1)a(l-a) " *}7L

after some simplification, proving the assertion regarding

1A

+ an?] <1,

1A

A-optimality.
In view of Theorem 3.1, for odd p (=2m+l) it is
enough to consider the class Ho’ By (3.3), for ne Ho, the

eigenvalues of M(n)} are

2m
Ao = I uzuu,
u=m+l (3.8)
™ u-1 .
Ay = I(us2 1 (u-r)cos{2rmi/(2mel) o, o (1<i<2m),
u=1 re=l
where by (3.1),
2m
{(2m+1) [ a, = 1; um+1""'°2m > 0. (3.9)
u=m+1l
Note that xj - szol_j (L<j<m). Hence by (2.1), the prob-

lems of finding D- or A-optimal designs reduce to non-

linear programming problems involving the selection of
2

subject to (3.9) so as to maximize xonx’

a reses®y
nil m' -1
or minimize xo +2L2 respectively, where the product

3
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and the summation extend over j = 1,...,m, and Xo,kl,
...,Am
m (=(p+l1)/2) is small for moderate values of p ang,

are as in (3.8). The number of decision variables

although one cannot hope to obtain compact algebraic
expressions for optimal values of Ol %gps the
underlying non-linear programming problems may be tackled
by standard numerical methods. Table I presents the
values of °m+1""'°2m yielding D- or A-optimal designs
for p = 3,5,...,19. As one can see, in the optimal solu-
tions each of @or1r %y is positive which suggests
that no further reduction of the class Ho' along the line
of Theorem 3.1, is possible.

Turning to the case of even p (=2m) the following
result holds along the line of Theorem 3.1,
Theorem 3.2, For p = 2m, let L be a subclass of Hl con-

taining those design measures for which ul-.._-u a

-
m=1 "2m
= 0. Then a D-(A-)optimal design in He ig also D-(a-)
optimal in H1 and hence in H.

Analogously to (3.8), (3.9), for n ¢ He the eigen-

values of M(n) are

2m-1
xo = I u uu,
u=m
m u-1
Ay, = Lfu+2

I {(u-r)cos(rviji/m)la (l<j<2m-1).
u=1 r=1 2m-u U=

3

where 2m(um+...+62m_1 2m-1 > 0. Note that

kj = A2m_j(lij:p-1). As before, the problems of finding

)y = 1; L

D~ or A-optimal designs reduce to non-linear programming
problems in m variables and the optimal choices of a

cee @ obtained numerically for p = 4,6,...,18, have

2m-1'
been presented in Table I. Just as in the case of odd p,
in the optimal solutions each of Gnreser%n1 is positive
and hence no further reduction of the class Ho is possi-

ble.
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4. CONCLUDING REMARKS

A major object of developing the approximate theory is to help
with the more intractable n observation design problem. Starting
from the results presented in this paper one can construct n obser-
vation designs which are quite close to optimality unless n is very
small (see e.g. Fedorov (1972, Ch, 3), Silvey (1980, p. 37)). This
is of importance when the available resources allow a moderately
jarge number of observations and interest lies in taking these
observations efficiently. In fact, it is seen that very often the
gimple rule of rounding off to the nearest integer leads to highly
satisfactory designs. The following example serves as an illustra-

tion.
Example 4.1. Let p=5, n=20, From Table I, the D- and A-optimal des-

ign measures, say n' and n*, are members of Ho with 0= 0.0685, a=
0.1315 and 03= 0.0462, o= 0.1538 respectively. With n=20, under the
rule of rounding off to the nearest integer, both n' and n" yield
the design measure fi, also a member of Ho' with a,= 1/20, a,= 2/20.
The D-efficiency of fi, measured as [det M(A)/det M(n")]*P, is
0.9968, while the A~efficiency of fi, measured as (!:r(M(n"))-l/

ey, 1s 0.9997.
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