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PERTURBATION INEQUALITIES FOR THE ABSOLUTE
VALUE MAP IN NORM IDEALS OF OPERATORS

RAJENDRA BHATIA

1. INTRODUCTION AND STATEMENTS OF RESULTS

Let .#1.#) be the space of bounded lincar operators on a Hilbert space J".
For an element A of AKX ) the absolute value of A is the positive operator |4, =
= (4°4)"* Estimates of the distance between -4 and B for two operators 4 and
3 have been obtained by several mathemaiicians and physicists. (See the papers
sy T. Kato [10). H. Araki and S. Yamagami (§), H. Borchers [8). H. Kosaki [12]
.nd F. Kittaneh and H. Kosaki [I1])

In particular, improving upon the result of Borchers [8). Kosaki proved in
2] that if A, B belong to the ideal .J, of trace class operators (see [9]. [17] or (18]
for definitions of norm ideals of A( ) and their propertics) then

i [114F = 1Billy < 224 + Byjyid — Biy)"2

Actually. both Borchers and Kosaki studied the continuity of the map A - !A!
v ihe predual of it W2-algewra. The above result is a special case.) Recentiy Kitianeh
ard Kosuki have proved that for A, B lying in the ideal J . p > 2. we have

12) 1141 = 1BtIl, € (I + BYl,1 A — BI M.

Our first theorem stated below completes these results by proving the ana-
logous inequality for 1 < p < 2.

THIOREM 1. Let A, B be two operators lying in the ideal S, of B, for
any index | € p € 2. Then

& 141 = 1B1ll, € 22=%(\4 + Bll, |4 — BI|, ).

This inequality is best possible for each index 1 < p < 2.

9 - 1M
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Now recalf that th: Schatten p-norms |- ||, are members of the larger cluss of
unitarily-invariant or symmetric norms (9], [17), (18). Each such norm {11 is defined
on an ideal .7 y.p,, of (") which is called the norm ideal ussociated with || '}i. Such
a norm is unitarily invariant. in the sense that (|UA V||| = || Al}] for all A and for
all unilary operators U and V.

Our next result provides an analogous incquality for these norm ideals.

THEOREM 2. Let A, B be two operators lying in the norm ideal S - . ; associate)
with any symmetric norm \\|-|ll. Then

@ [ii141 — 18Il € 2514 + Bil\ W4 — Blljy™.

Notice that while the inequality (1) is included in (4), the inequalitics (2) and
(3) for p > 1 are not. However, sinee the constant 2'2 occuring in (1) can not be
improved. the inequality (4) also can not be improved if all the symmetric norms
are simuliancously involved. This ruises the question of identifying intercsiing
classes of symmelric norms where one can do betler.

Call a symmetric norm a Q-murm and denote it by ||« {lq if there exisis another
symmetric norm ||« |l such that

®) NAlig = (li4*Alig)"*.

One can see Lhat all the Schatlen p-norms. when p > 2 are Q-norms since for each
p > | we have |A*A[}® = |Alig,. On the other hand when 1 < p < 2 then the
p-norms are not Q-norms. Examples of Q-norms which are not included in the
Schatien p-class have been provided in [6). In some recent papers [4], [6), [7). we
have found that il is this quadratic character of the p-norms. for p > 2 which i
crucial in deriving several inequalities concerning them. Our next theorem is a
generalisation of (2) on these fines:

THEOREM 3. Let A, B be any iwo aperators belonging 10 the norm ideul asso-
ciated with anv Q-norm |- |lg. Then

© 1145 — 1Bt llg < (14 + Bllg}l4 — Biig**.

2 SOME PRELIMINARIES

Given any compact operator X denote by 5,(X) > s(X) > ... the singulor
values of X, i.e. the eigenvalues of |X]. Any symmetric norm is a symmetric gauge
Sunction of the sy, i.e. given such a norm ||} ||{ we can find a symmetric gauge function
& defined on sequences of positive real numbers such that [[|X]]| = &({spX)}).

For 0 < p € oo define

U] 11X1, = (X sfx),
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where, by coavention, {|Xlla = 5(X). For 1 € p < co, || Xll, are the Schatten
pmnorms. For 0 < p < 1, (7) does not define 2 norm but it is a unitarily invariant
functional which is a ‘‘quasi-norm™, in the sense that instead of the triangle ine-
quality we have

1§ 14 + B, < 22=)(|l4ll, + lIBl,), 0<p<1.
Further, we have the Hdlder inequality
9 148l < ll41,11Bilg»

for 0 < p,q,r € oo with 1/p + 1/g = 1/r. (See e.g., Kosaki [12] or McCarthy [t4).)
Note that for 1,p > 0 we have

o) Xl = NXI1,.

We will use the notion of majorisation, as in [2], [}3] or [I8]. If x and y are
: vo vectors, finite or infinite di ional, with gative coordinates arranged
. decreasing order, we say that x is weakly majorised by y, in symbols x <,y if

13 X
frk=42..., ‘Z 3 € %3y Further, it 3,x, =Yy, in addition to the
=1 J=1

; wve inequalities, then we say that v is majorised by y, in symbols x < ».
Every symmetric gauge function is monotone with respect to weak majorisa-
1o, ie. if x <,y then &(x) < #(y). In particular, if x; € y; for all j then
«[¥) € () for all symmetric gauge fuactions.
Using this last fact, the subadditivity of @ and the ordinary arithmetic mean —
geometric mean inequality one can easily derive a Cauchy inequality for symmetric
1 wge functions:

o By, Xpra, o) € (O, xE, B0 03, L

We now establish some analogues of (8) and (9) which we shall use in proving
cur results.

Given any unitarily invariant norm j|(-|]| define

112 1Al = 11114

“his defines & unitarily invariant functional which is a quasi-norm in the
nse

PROPOSITION 4. For every unitarily invariant norm |||- ||| we have

{1 4 + Blthp € 2llAllba + 1181l )
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Ny i

Proof. The function 1) = M isa function
on [0, oo) with f{0) =0. Hence by a result of §. Rolfel’ d[l6] (see nlsoR C. Thompso
[19). T. Ando [2])

{94 + B)} << {s)(A) + ™(B)}-

Hence, by its monotonicity with respect to weak majorisation and its subadditivily,
every symmetric gauge function @ satisfies the inequality

O({s}(4 + B < (A} + o({HBN-
Hence, using the convexity of the function g(r) = 1* we get
(14) (®({5™(4 + BHP < A@{IHAD + (B({5BYY.
Since every unitarily invariant norm arises as a symmetric gauge function of singuly

values, the inequality (13) follows from (12) and (14). B

REMARK. Using (10) one can see that if the norm in question is {|-||, the
the procedure (12) associates with it || - [|,,,. When p > 2 the inequality (13) follows
from the friangle inequality for ||-||,2. For 1 < p < 2 the inequality (13) folloxs
from (8). In cither case the inequality (13) is weaker than these inequalities in thest
special cases.

We will also need the following noncommuiative version of the Cauchy
-Schwarz Inequality.

PROPOSITION 5. For every unitarily invariant norm |}|-1|| and any two operaion
A and B we have

(15) [IH1ABII < (1Al 111l

Proof. Given an operator X denote by AXX its kth exterior power (antisys
metric tensor power) for k = 1,2, ... . If X has singular values s,(X) the singux
values of A*X are the products $i(X) ... s (X) wheredy, ..., J; are any k distios
indices. Recall that [[X|| = 5,(.X). Hence for 0 <7 < oo

X »
(16) I1 $5(48) = [ AXA4B)" < (A ANHIAXBY = [T SHAN(B)-
J=1 J=1

In particular, choosing r = I/2 and applying a frequently used lemma of Wel
and Polya ([20], [15)) we get the majorisation

an {SAB)} <. {5J(A)5}7(B)}.
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Once again, using the y of sy ic gauge functions with respect to weak
majorisation, and then applying (11) we get

Y({s}H(AB)}) < PUs{ANS s B~

for every symmetric gauge function @. Using the correspondence between unitarily
iranant norms and symmetric gauge functions we get (15) from this.

We should remark that the relations (16) and (17) are well known, going back
1o the work of Weyl (20].
1 PROOFS OF THE THEOREMS

We will use a result of Birman, Koplienko and Solomyak [21], also proved
wAndo (3], according to which for any two positive operators 4, B, for every 0 <
<t < | and for every symmetric norm ||| we have

1] lI14* = Bl < 1114 — B lil-

Asin Kosaki [12) we will make repeatedly use of the identity
0 A*A— B*B = —;—{(A + B)*(A ~ B) + (4 — B4 + B)},

vk for any (wo operators A and B.

Proof of Theorem 1. Use the inequality (18). For the special case of p-norms
wt get from this, using (10), for positive operators 4, B

(0 14— B'll, < 14— Bli, for 0<tg1, 1€p<oo

In particular, for positive op A, B we have

l4¥t — BVES < )4 = Bl for 1 € p < oo.
Hence, for any two operators 4, B
m 11141 —1BI )12 < || 4°4 — B*Bi,, for 1 < p < co.
Using the identity {19) and the inequalities (8) and (9) we get
) (144 — B*Bll, < 297-|4 + BI, 14 — Bl

le 1 € p € 2. The inequality (3) of Theorem | now follows from (21) and (22).
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The example given by Kosaki [12], namely

(o

also shows that the constant 24212 in (3) cannot be improved upon. [ |

To prove Theorem 2 we will use the “triangle inequality” for the absolu
value: Given A, B there exist isometries U and ¥ such that

(B) A+ B < UAU® + V.BY®.

For finite dimensions this result was proved by Thompson [19] and for infinit
dimensions by Akemann, Anderson and Pedersen [1]. See also Kosaki [12).

Proof of Theorem 2. Once again using the inequality (18) we get for any ts

operators A4, B
24 [IH1Al =B 1 €1l A*A — B*BY:",
Using the identity (19) and the “triangle inequality™ (23) we can find isometries {
and ¥ such that

€ — ] —
(A+ B)(A-B) Ue s V‘M B)*(A + B)

2 | 2

(25) {A°A—B*B|< U‘ ve.

Now recall that the function 1 — 1" is operator monotone on [0, 00), i.e. if X3
> Y > 0then X¥* 3 YV>0. Also every unitarily invariant norm is monotone in
the sense that if X > ¥ > 0 then [ X| 2> ![|Y.i. (See. e.g. [13] for these factsp
Henee, (23) leads to the inequality

|

[II14%4 — B*arA|I* < AR

A —
[U‘{A + B)Z(A B)

(26)

s

- 1,3
R V)u m;u +8)| V,]
|

Using Propositions 4 and S, and the fact that [ii TXSH| < T X1 || S} for a
three operators T, X and § (see [9]) we get from (26)

|

2
} = 1A + BY(A — B +
il

[ 14%A — B*BPAIE < 2 { A

(A 4+ B)*(4—B) i”"

t

+ “HM — B);(A + B)

+ {IHI(4 — BYMA + BYMY|it < 20lIA + BJi{li4 — Bl
The incquality (4) of Theorem 2 now follows from (24) and (27). 8
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Proof of Theorem 3. Let || - ||g be any Q-norm and let |- |l be the norm asso-
ciated with it according to the relation (5). Specialising inequality (24) in this case
we get using (5):

%) |41 — 1B 1l < ll4*4 — B*Bllg.

Now using the identity (19) we get

19) iiA*4 — B*Blg < %{ﬂ(f‘ + B)*(4 — B)llg + (4 — B4 + B)ip).

Now note that for any two operators T and S we have, using (5) and Proposition 5
ITSllg = 11781 = ITS12g < ITlolISlle-

Using this we get from (29)

L] [[4*4 — B*B.g < |14 + Bigll4 — Blg.

The inequalities (28) and (30) together give the inequality (6) of Theorem 3.
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Note added in proof. After this paper was submitled for publication the author lear
that Theorem | of this paper (and its isation 10 von N Igeb has also b
proved by H. Kosaki.
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