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1. Introduction and summary

We shall denote by the triplet (Y, XB,02V) the lincar model ¥=XB+z where
Y., and ¢, are random vectors with E{e)=0 and D(e)=0>V, X, .. is & non-
sochastic matrix (design matrix), 8, and o are unknown parameters. Here ¥ is
a known nonnegative definite (n.n.d.) matrix. The following notations will be
followed in the paper. For a matrix A, M(A) and N(A) respectively denote the
column span and null space of A, A~ denotes a generalised inverse (g-inverse) of
A, i.e. any matrix satisfying 44" A=A and A* denotes a matrix of maximum
rank salisfying A'A*=0. For an n.n.d. matrix N, P,y denotes the matrix
A(A'NA)Y"A’N &nd P, denotes P,,. A matrix with T, Ty,..., T} as diagonal
blocks and null matrixes as off-diagonal blocks is denoted by diag(T\, 7y, -.., T¢).
The definitions of best linear unbiased estimator (BLUE), linear minimum bias
estimator (LIMBE) and best linear minimum bias estimator (BLIMBE) under linear
model (Y, XB,0V) are well known and we refer to Rao and Mitra (1971, Chapter
7and 8) for the details.

The problem of robustness of BLUE’s with incorrect dispersion matrix received
considerable attention in the literature and some significant contributions in this line
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are Rao (1967, 1968, 1971), Mitra and Rao (1969), Zyskind (1967), Watson (1967)
and Mitra and Moore (1973). However, the problem of robustness of BLUE’s with
incorrect design matrix has not received much attention in the literature except for
Mitra and Rao (1969) where they considered the dispersion matrix as g%/, If we
have a linear model (Y, X8, a2V) with restrictions of the type RA=0, then in the
restricted model, the expectation of the observations is given by

E(Y:0')=(X"R')B,
whereas in the unrestricted model, the expectation can be written as
E(Y:0'y=(X":0')8.

Thus we have two linear models which differ in their design matrices and it is of
importance to characterise R such that the BLUE of X8 in the unrestricted model
continues to be its BLUE in the restricted model also. Another situation where we
come across linear models which differ in their design matrices is when we consider
parametric augmentations to a given linear model. In the original model we have
E(Y)=X,B,, whereas in the augmented model we have E(Y)= X8, + X,8,. Here
it is of interest to characterise X; so that the BLUE of X, 8, in the original mode|
continues to be its BLUE in the augmented model also. Recently, one of us, Mathew
(1980) solved the following robustness problem of BLUE's. *When is the BLUE of
every estimable p'f under (Y, X8, 0*!) its BLIMBE under (¥, Xf,01)?” What is
essentially demanded here is the following: Let p’8 be estimable under (Y, Xo8,0%/).
If p’B is also estimable under (Y, X, ¢1), its BLUE under the first model should
also be its BLUE under the second model. If it is not estimable under the second
model, we want it to be the best possible, namely its BLIMBE.

As pointed out by Mitra and Moore (1973), when V is singular, BLUE of X8
under (Y, X,f,0%V) does not have a unique linear representation except when
rank(VZy) =rank(Z,) where Zy=Xg. In the same spirit as in Mitra and Moore,
(1973), we obtain complete solutions to the following problems:

Problem (1). What is the class of all models (Y, X4, a¥) such that a specific linear
representation of BLUE of every estimable p’f under (Y, Xo8,0¥) is (a) unbiased
estimator (UE), (b) a BLUE, (c) a LIMBE and (d) a BLIMBE of p’f under
(Y,XB,a*V)?

Problem (2). What is the class of all models (Y, XB,o2V) such that at least one
linear representation of BLUE of every estimable p’f under (Y.Xaﬂ.a’ V)is (a)an
UE, (b) a BLUE, (c) a LIMBE and (d) a BLIMBE of p’# under (Y. XBa'M1

Problem (3). What is the class of all models (Y, X8,02V) such that cvery linear
representation of BLUE of every estimable p’8 under (Y, X,8,a*¥) is (2) an UE.
(b) a BLUE, (c) a LIMBE and (d) a BLIMBE of p'8 under (Y, X4,0*/?
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It is obvious that if the BLUE of Xpf has a unique linear representation under
(V. Xo8, 0*V) then the three problems stated above merge into one. If it is known
that M(X)C M(X,: V), then also the three problems merge into one, since, when
this condition holds, the different linear representations of the BLUE of X8 under
(Y. Xef.a*V) coincide with probability one under (Y, X8,02V),

Sometimes one might be interested only in inferences regarding a few estimable
parametric functionals and not all. The problem of robustness of BLUE's of a sub-
set of estimable parametric functionals is solved in the last section.

The norm defining the bias of a LIMBE is taken to be the Euclidean norm. For
matrices X, and X, we denote D=Xp— X, Zo=X;' and Z=X*.

2. Solution to Problem (1)

We first prove an algebraic lemma which we need in the sequel.

Lemme 2.1, Let V be a n.n.d. matrix of order nxn, X, be a matrix of order nxm
and G be a specific n.n.d. g-inverse of V+ XoXy. Then there exists a nonsingular
matrix P and order nx n and an orthogonal matrix Q of order mxm such that

X,=Pdiag(1,0,0)Q", @n

V+ XoX;=Pdiag(A,, A2, 0P’ (2.2)
ond

G =P diag(A7', A7, S)P"! 2.3)

where A| and A, are diagonal posilive definite matrices and S is n.n.d.

Proof. Since XoXo and V+XoXp are both n.n.d. and since M(X,X,)C

M(V+ XoX;) there exists a nonsingular matrix T such that
XoXo=Tdiag(/0,0)7" and V+ X,Xy= Tdiag(A,, Ay 0T

where A, and A, are diagonal positive definite (p.d.) matrices (see Rao and Mitra,
1971, p. 121). Then G is an n.n.d. g-inverse of ¥+ XpX, if and only if

A' 0 R
G=T""{0 A R| T
Rl R, R

where Ry, Ry, R; are such that Ry—R{A R - R;AR; Is n.nd. Clearly
G=P""diag(A;", A7 ", S)P~! where §=R;— R{A\R, - RiA,R; and

10 -AR
P=T|0 I -mR,|.
00 1
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For this choice of P, there exists an m x m orthogonal matrix Q satisfying (2.1), (2.2)
and (2.3) in view of Problem 1 in Rao and Mitra (1971, p. 17).

Remark 2.1. P in Lemma 2.1 can be chosen such that A,-1 is of the form
diag(r; 0) where I'is p.d,

Let G be a g-inverse of V+X,X;. Rao (1971) and Mitra and Moore (1973)
established that BLUE of X,8 under the model (Y, X8, 02V) has a linear represen-
tation Xo(XyGXp)™XoGY. Mitra and Moore (1973) also observed that G could be
chosen to be n.n.d. without loss of generality. Hence a specific linear representation
of BLUE of Xg8 under (Y,Xoﬂ,a’V) is Py,gY where G is a specific n.n.d.
g-inverse of V+ XoXj.

The following theorem gives the solution to Problem (1) (a) and (b).

Theorem 2.1. Consider the linear models (Y, Xof,a*V) and (Y, XB,a*V). Let G be
a given n.n.d. g-inverse of V+XoX;. Then

(a) the linear representation Py, cY of BLUE of Xof under (Y, X,f, V) is un-
biased for Xof under (Y, X,B,a*V) if and only if

X=X+ (- Py,c)A (2.9)

where A is arbitrary, and
(b) Xo(X;GXo)” X;GY is BLUE of Xof under (Y, XB,a*V) if and only if X is as
in (2.4) where A salisfies

MX,GV:0Y CM(Xy: A'I- Py, 6)’)’
or, equivalently, A satisfies
(I~ Py, )A(Xy VGXo+ (I - X5 Xp)B)=0
where B is arbitrary and Xg is an arbitrary but fixed g-inverse of X,.

Proof.
E[X(XgGXo) XoGY |(Y, XB,a* V)] =X, 8 VB
@ Xo(XoGXp)” XoGD=0
® D=(I-Py,)A where A is arbitrary.
This completes the proof of (a). Now,
Px,cY is BLUE of Xy under (Y, XB,a2V)
® Py.cVZ=0
® XoGVZ=0
®  VGXy=XoC+(I- Py, g)AC for some C
®  VGXy=X,C @5
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and
0=(/-Py, G)AC for some C (2.6)
& M(X,GV:0)'CM(Xg: A"~ Py, )Y,

Solving for C from (2.5) and substituting in (2.6), we see that (2.5) and (2.6) hold
if and only if

(I- Py, 0)A(Xg VGXo+ (I - X5 Xp)B)=0 for some B.
This completes the proof of (b).
Corollary 2.1 (Mitra and Rao, 1969). If in Theorem 2.1, V=1, then BLUE of X8
under (Y, XoB,a*1) is its BLUE under (Y, Xp,a*I) if and only if
X=Xy+(I- Py)A
where A satisfies
M(Xo)NM(A'(I-Py)) = {0}.
Proof. If V=1, then G=(/+ XX;)~' and Px,.c=Px, In this case the conditions
in Theorem 2.1 reduce 10 X'=Xy+ (/- Py)A, where A satisfies
M(X;G:0YCM(Xg: A'I-Py)) & MX)NMA'(I-Py))={0}.
We state the following lemma.
Lemma 2.2. Consider the linear model (Y, X, 0*V) and let | &| = ('€)'2. A linear

estimator I'Y is LIMBE of a parametric functional p'B if and only if XX'I= Xp and
'Y is BLIMBE of p'B if and only if XX'l=Xp and Vie M(X).

We prove:

Theorem 2.2. Consider the linear models (Y, X,8. 02V and (Y, XB, V) and let G
be a given n.n.d. g-inverse of V+XoX;. Consider the representations of Xo
V+ Xy X; and G specified in Lemma 2.1 and Remark 2.1. Then:

(a) the representation p’(Xy,GX,)~ XoGY of BLUE of every estimable parametric
Junctional p'B under (Y, Xof, a2V is its LIMBE under (Y, Xf,a*V) if and only if

B C G
D=P|E E E|¢@ @7
F R R
where B is an arbitrary n.n.d. matrix with eigenvalues in [0,1), C, and C, are arbi-
trary matrices satisfying C,C)+C,Cy=B~B* and E,, F, (i=1,2,3) are arbitrary
Matrices satisfying

M(E\:E;:E)'CN(B:C\:Cy) and M(F:Fy:F))’CN(B:C,:C))



320 T. Mathew, P. Bhimasankaram / Optimallly of BLUE’s

and

(b) the representation p'(XoGXo)™ XoGY of BLUE of every estimable p’8 under
(Y, Xo8.0%V) is its BLIMBE under (Y, Xf,a*V) if and only if D Is as given in part
(a) where B=((By)) (i,j=1,2) satisfles

(I-B,))-BiAI- By)" B}, is p.d.,

B, being the top left hand corner submatrix of B having the same order as that of
T in Remark 2.\ and M(E,: Ey: Ey)' and M(F\:F;: F;)’ are also subspaces of
NU;: Us: Uy), Uy, Uy, Uy being arbitrary matrices satisfying

(U-BU,-CU,-CUy=1-A"\.
Proof. (a) From Lemma 2.2 it follows that for every estimable p’A under
(Y, X,$,0%V) its BLUE p"(XoGXp)" XoGY is its LIMBE under (Y. Xp,a*V) if and
only if
XX'GXo(XoGXo)™ Xo=XXp
o XD'GXy=0
@ XoGDXy=X,GDD', 2.8)

Write P-'DQ=T= ((Ty)), i, j=1,2,3, where the partitioning is clear from the con-
text. Then (2.8) holds if and only if

)} 3 3
Ty =:Z| TuTi 0=;):| TuTu 0=‘):| TuTs

which are equivalent to

Tyw=8, T,;=C, Ty=0Cy Ty=E, Ty=F, i=1,23,
where these quantities are as specified in the statement of part (a) of the theorem.
This completes the proof of part (a).

(b) For every estimable p'8 under (Y, Xof, 02¥), its BLUE p'(X3GX,) X,GY is
its BLIMBE under (Y,Xf,0°V) if and only if X,GDXy=X,GDD' and
Z'VGXy=0, or, equivalently M(VGX,)C M(Xy— D) where D is given by part (a).
Using the representations of X V+XoXy and G specified in Lemma 2.1 and
Remark 2.1, we see that the above condition holds if and only if

(- B, - C\Uy-CyUs=1- A, (2.9)
E\Uy+EyUy+ Ey Uy =0, (2.10)
FU\+FyUy+ FU; =0, @1

for some U,, U, and U.
When (2.9) is consistent, it follows from (2.10) and (2.11) that E; and F;,
i=1,2,3, should be as stated in the theorem. Since C,C) + C;Cy =B~ B? (from part
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(2) of the theorem), M(C, : C;) C M(I - B) and hence the equation (2.9) is consistent
if and only if

M(I-AYCM(I-B). (2.12)

Let A, =diag(A,), Ay), where A}, and B, are of the same order equal to that of
[in Remark 2.1. Then

I1-A]"=(A, - DA = diag(T A}, 0),
in view of Remark 2.1. Hence (2.12) holds if and only if
M(A;T:0YC M(I- B). @.13)

Since

M- B)=M(U— By)-By(I-By) B, _BIZ)
0 .

1-By,
(2.13) holds if and only if (/- B),) - Byy(/ ~ Byn)™ By; is p.d. The proof of Theorem
2.2 is now complete.

3. Solution to Problem (2)

The class of all solutions to Problem (2) can be obtained as union of solutions
to Problem (1), the union being taken over all n.n.d. g-inverses of ¥+ XoX;. How-
ever, given X, one does not know from the above whether there is at least one linear
representation of BLUE of every estimable p’# under (Y,X,8,0%V) with the
desired optimality condition. We give below several methods for finding this and
also oblaining one such linear representation, whenever it exists.

At least one linear representation of the BLUE of every estimable p’# under
(Y, Xof,aV) is unbiased for p’B (or is a LIMBE of p’8) under (Y, Xf, V) if and
only if there exists G, a g-inverse of V+ XX, satisfying XoGD =0 (respectively
XyGDX'=0). This is equivalent to d ding that the following system of equa-
tions (3.1 (respectively (3.2)) should have a common solution in G, which can be
verified using Theorem 2.2 of Mitra (1973).

XoXoGDD'=0,  (V+XoX)G(V+XoXs)=V+XoXp; @

XoX;GDX'XD'=0,  (V+XoeX)G(V+XoX)=V+XoXg.  (3.2)

1n order to verify if X satisfies the requirement in Problem (2) (b) (or (d)), in addi-

lion to examining the consistency of (3.1) (respectively (3.2) it is enough to check
the condition XGVZ =0 for any G, a g-inverse of ¥+ X,X;.

The proceding discussion suggests a method of verifying whether the require-
ments stated in Problem (2) are satisfied for two given linear models. In what
follows, we shall present several equival lutions to problem (2).
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Theorem 3.1. (a) At least one linear representation of the BLUE of Xy under
(Y, Xof.0*V) is unbiased for Xof under (Y, XB,aV) if and only if any one of the
Jollowing equivalent conditions holds:

@) D=PTQ’ (.)
where P and Q are as given in Lemma 2.1 and T=((Ty)) (5j=1,2,3) satisfies
M(Tyy: Ty T CM(Ty : Ty Ty, (.4

(i) M(Xo:0:0CM(Xo: VZ,y: DY,

(iil) M(X)NM(VZ,: D)={0},

(V) M(VZy:DY=M(Z;VZy: Z;D)

(b) A1 least one linear representation of the BLUE of X B under (Y, XB.a*V)
is its BLUE under (Y, X,0%V) if and only if any one of the following equivalent

conditions holds:
(i) D is given by (3.3) and (3.4) with the further condition

M(zin )Mz 7) 03
where A\ is as given in (2.2),
(i) M(X,:0:0:0)'CM(Xy: VZy: VZ:D)',
(i) M(X)NM(VZy: VZ:D)={0},
(iv) M(VZy:VZ:DY'=M(ZyVZy: Z4VZ: Z,D).
Proof. It is fairly easy to establish the equivalence of (ii), (iii) and (iv) in Theorem
3.1 (a) or (b). In part (a) we shall prove (i) and establish its equivalence with (ii).

We want D to satisfy the condition X,GD=0 for some n.n.d. g-inverse G of
V+XpX,. Since ¥+ XoXj is given by (2.2), an n.n.d. g-inverse is

A7' 0 R
G=P7|0 A;7' Ry| P!
Rl Ry, S
where S~R{A,R, - R3AyR, is n.n.d.
Let P~'DQ=T=((Ty)), ij=1,23. Then X4GD=0 for some n.n.d. g-inverse G
of V+XpXj if and only if

AT'Tu+ R Ty =0, AT+ R Tyu=0, A7'Tyy+RTyy=0,
for some R, or equivalently
M(T) 1 T Tyy) CM(Ty : Tyt Ty,

which establishes condition (i) in part (a). To prove the equialence of (i) and (iii)
in (a), observe that when X, and ¥+ Xy X; are given by (2.1) and (2.2), one choice
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of Zy is Zo=P'""diag(0,/, /) and then VZo=P diag(0,A,,0). Let D be given by
(3.3) and let
a=(a):03:@y), b=(bj:b3:b3), c=(c{:¢3:c3)
be any three vectors.
Then M(X,)NM(VZ,: D)= {0} if and only if
X+ VZp+Dc=0 = Xea=0
or equivalently
diag(/,0,0)a+diag(0, 42, 0)b+ Tc=0 = a,=0,

that is (3.4) holds. This completes the proof of part (a) of Theorem (3.1). In (b),
we shall prove (i) and (ii). To prove (i), observe that at least one linear representation
of the BLUE of X,B under (Y, Xo8,0V) is its BLUE under (Y, XB,02V) if and
only if D is given by (3.5) and (3.6) with the condition XoGVZ=0 or, equivalently,
M(VGXp)CM(Xy— D).

(A =DA == Ty))K, - Tk - Tk, (.6
if and only if

0=Ty K\ + TyKy + TisK;, 37

0=Ty K+ TyK + TyK;. (3.8)

Using (3.4) and (3.8) in (3.6) we get K| =(A, -I)A;". Hence (3.6), (3.7) and (3.8)
are equivalent to (3.5). To prove (i), we notice that L'Y is BLUE of Xo8 under
(Y, XoB,a*V) and (Y, XB,aV) if and only if

XoL=X3, ZgVL=0, D’L=0, Z'VL=0
or, equivalently,
(Xo:VZy: VZ:D)Y'L=(X,:0:0:0)’,
that is (i) holds. The proof of Theorem 3.1 is now complete.
Now let V+ XoXg= L., E; (k<n) and DD’= ¥ | A,E; be a spectral representa-
lion of DD’ relative to ¥+ XoXj as defined by Mitra and Moore (1973). Let G, be

a p.d. matrix such that Gy is a p.d. g-inverse of V+ XoX; and E,GoE;=dyE;. We
now prove:

Theorem 3.2. (a) At least one linear representation of the BLUE of X8 under
(Y, XoB,0*V) is unbiased for Xo8 under (Y,Xp,aV) if and only if

X=Xo+(I- Py, 6 )A 3.9

where A is arbitrary.
(b) At least one linear representation of the BLUE of X, under (Y, X,8,0*V) is
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its BLUE under (Y,Xp,a*V) if and only if X is given by (3.9) where A satisfies
M(XG,yV:0)'CM(Xo: A'(I- Py, )')
or equivalently
(- Py, ) AlXg VGoXo+({I- Xg Xp)B] =0,
Xy being an arbitrary but fixed g-inverse of X, and B arbitrary.
Proof. In view of Theorem 2.1, sufficiency is obvious. To prove the neces-
sity of (3.9), assume that there exists a g-inverse G of V+XpXg such tha

XolXyGXp)~ XgGY is unbiased for Xof under (Y, XB.a*V). Then it is necessary
and sufficient that

XyGD=0,
or equivalently

ZI A XsGE;=0, (3.10)
that is

LX,GE;=0 (using E,GoE;=8;E) fori=1,2...,n. 3.1

Using (3.10), (3.11), and the fact that M(E;) CM(V + XX) for i=1,2,...,k and
XoGoE;=0 for i>k, we get

Y AXGE=0 = ¥ LX,GE=0
ra) ial)

o X;G,D=0
& (3.9) holds.
This proves the necessity of (a). The necessity of (b) is proved simitarly.

Remark 3.1. Theorems 3.1 and 3.2 not only provide a method of verifying whether
there exists a linear representation of the BLUE of X8 under (¥, X,4, ¢2¥) which
is an unbiased estimator (or a BLUE) of X,8 under (Y, X8, 62¥), but also suggesis
a procedure for constructing such a linear representation, whenever one exists.

Remark 3.2, Theorem 3.2 and the conditions (ii), (iii) and (iv) in Theorem 3.1 (a)
and (b) are analogous to Theorem 3.1 and Theorem 3.2 respectively in Mitra and
Moore (1973).

Remark 3.3. From (3.1) and (3.2) it is clear that the solution to Problem (2) () (or
(d)) can be obtained by replacing D with DX” in the solution to problem (2) (a)
(respectively (b)) given in part (a) (respectively (b)) of Theorem 3.1 and Theorem
32,
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{. Solntion to Probiem (3)

We prove:

Theorem d.1. (a) The BLUE of X, under (Y, X,8,0V), irrespective of its linear
representation is unbiased for XoB under (Y, XB,0%V) if and only if

X=Xo+ VoA (4.1
where A is arbitrary.

(b) The BLUE of Xof under (Y, X,8,0V), irrespective of ils linear representa-
tion is its BLUE under (Y, Xf,0%V) if and only if X is given by (4.1) where A
sotisfies

M(XoGV:0)'CM(Xg: A'Zy VY
or equivalently A satisfies
VZyA[Xg VGXy+ (I - Xy Xp)B) =0,

X, being an arbitrary but fixed g-inverse of Xo, B is arbitrary and G Is any
g-inverse of V+ X, Xg.

Proof. (a) D is required to satisfy the condition

X,GD=0 “.2)
for every g-inverse G of ¥+ XoX;, which happens if and only if D=(V+ X, X))k,
for some K. From (4.2), we get K=Z3A for some A and thus X=X, + VZyA,
which completes the proof of (a). Proof of (b) is similar to that of Theorem 2.1(b).

Theorem 4.2. Consider the representations of X, and V+ XoXy given in (2.1),
(2.2) and Remark 2.1. Then (a) the BLUE of every estimable parametric functional
under (Y, XoB.a*V) irrespective of the linear representation is its LIMBE under
(Y, X,a’V) if and only if
B C G
D=P|E E E|Q
0 0 0

where B is an arbitrary n.n.d. matrix with eigenvalues in [0,1}, C,, C, and E;
(i=1,2,3) are arbitrary matrices satisfying
C\C+C,C;=B-B* and M(E\:E;:E))'CN(B:Cy:C)).

(b) the BLUE of every estimable parametric functional under (Y, Xof, atV), irre-
spective of the linear representation is its BLIMBE under (Y, XB,0*V) if and only
if D is as given in part (a), where B=((By)) (i,j=1,2) satisfies

1- B, - B~ By)" B} is pd.,
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By, being the top left hand corner submatrix of B having the same order as that of
I in remark 2.1 and M(E, : Ey: E;)’ is also a subspace of N(Uy: Uy: Uy, Uy, Uy
and Uy being arbitrary matrices satisfying

(I-B)U, - C Uy - CUs=1- A"\

Proof. (a) We want D to satisfy the condition (2.8) for every n.n.d. g-inverse G of
V+ X, Xp. Using (2.1), (2.2) and the partitioned forms of T=P"'DQ and G as
given in the proof of Theorem 3.1(a) (i), we see that (2.8) holds for every n.n.d.
g-inverse G of ¥+ XpX; if and only if the equations

) )
A7 T+ R Ty =/1|_"):| TIITI’1+RIIE| TyTin

) J
0=A7"'Y Ty Ty+ Ry EI TyTu
i=1 in

3 3
0=A|_'_EI TIIEI+RI‘E| Ty

hold for every R,. The last equation holds for every R, if and only if Ty=0,
i=1,2,3. The first two equations then reduce to

3 3
T"=-):| 7T and °=_ZI T Ty

respectively. The proof of Theorem 4.2 can now be completed along the same lines
as that of Theorem 2.2.

Remark 4.1. Application of the results so far obtained to the restricted linear model
and some other cases, are discussed in Mathew (1981).

§. Optimality of BLUE's of a subclass of paramelric functioas

In practice it happens that one may not be interested in inferences on all estimable
parametric functionals, but may be interested in only a subset of them, say, for
example, certain contrasts in the models of design of experiments. In this section,
we shall study the robustness regarding the BLUE’s of a subclass of estimable para-
metric functionals.

Let A be a specified kxm matrix such that M(A')C M(X,). We shall obtain
conditions on X such that a specified linear representation/ some linear representa-
lion/ every linear representation of the BLUE of AB under (Y, X,f,0%V) is its
BLUE under (Y, XB,0%V) also.

Consider the BLUE A(X;GXo) X;GY of AB under (Y, Xof,02V), where G is a
specified g-inverse of ¥+ XoX5. Let B=A(XyGX,p)" X,G. BY is also BLUE of Af
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under (Y, X8, a2V} if and only if BD=0 and BVZ=0, which are equivalent to the
conditions

D=(-B"B)T ¢.0)
and
BV=WI[X,+T(/I-B By (5.2

for some T and W, It is easily verified that for any fixed W, (5.2) is consistent in
Tif and only if BVB'= WA’. Once we oblain matrices W salisfying this condition
T can be solved for from (5.2). The following lemma gives a characterization of
matrices W satisfying BVB'= WA’.

Lemma 8.1, BVB'= WA’ if and only if W=(L,: L,XS;: $3)" where (L,:L,) is an
orthogonal matrix such thai the columns of L, form a basis for M(BV), S, is any
solution (of full row rank) of the equation L|BVB‘'=S,A’ and S, is any solution
of $;A'=0.

Proof. If L, and L, are as specified in the lemma, then we can write W=
(L, : Ly)(S) : S3)’ for some S; and S,. Then

BVB'=WA’ & BVBE'=(L:Ly)S;:S;)'A’
or equivalently

LiBVB'=S5,A4' and 0=5,4".

Since

rank(L,BVB’) =rank(BV) (which cannot exceed rank(A4))
=the number of columns of L,
=the number of rows of §,,

it is easily seen that S, satisfying L;BVB’=S,A"is of full row rank. This completes
the proof of Lemma 5.1.
If ¥=1, then B=A(X;Xy)" Xy and the equations (5.1) and (5.2) can be written

as

D=(I-Pg)T (5.3)
and

B=W(XoPp+(Xy+ T')I - Py)) (5.4)
for some T and W. (5.4) holds if and only if

B=WX;Py and 0=W(Xy+ T)(I-Pg),
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for some W, which is equivalent to the condition

M(B:0)CM(XoPp : (Xo+ TYI- Pg))’, 6.5
that is

M(X;Pg)NM((Xg + T')(I- Pg))={0}. (5.6)

Hence D is given by (5.3), where T satisfies (5.5) or (5.6). Matrices T satisfying (5.5)
or (5.6) are also solution of

(U= Py)(Xo+ TPy Xo)™ B+ (I - (Pp-Xo)™ (Py Xo))Q] =0

where Q is arbitrary. Observe that the solution obtained here is anal, 10 that
given in Corollary 2.1.

Let Gy be the p.d. g-inverse of V¥ + XyXgconsidered in Theorem 3.2, Arguments
similar to those in the proof of Theorem 3.2 will lead us to the conclusion that at
least one linear representation of the BLUE of Af under (Y, X,f,0%V) is an
unbiased estimator (or a BLUE) of AB under (Y,XBaV) if and only if
A(XgGoXo)™ X3G,Y is an unbiased estimator (respectively BLUE) of A# under
(Y, XB,0V). Equivalent conditions similar to those given in theorem 3.1 can be
derived in a straightforward manner.

Now let G be any g-inverse of ¥+ XoXg and let C=A(XoGX,)™ Xo. Every linear
representation of the BLUE of A under (Y,Xg8,62V) is its BLUE under
(Y. XB,0*V) if and only if

D=(V+XeXI-C~OT (5.7
and
CGV=W{Xo+T'(I-C~C)(V+XeXo) (5.8)

for some W and 7. Let K be a matrix of maximum rank such that
(I-CC™)'(V+ XyXo)K=0. Observe that X satisfies M((V+ XoXg)K)=M(C").
Then for every fixed W, (5.8) is consistent in T if and only if CGVK = WX K. It
is fairly easy to observe that

M(K'VGC')CM(K'X,) and rank(CGVK)=rank(CGV).

Using these facts and arguments similar to those given in the proof of Lemma 5.1,
one can easily arrive at the fact that

CGVK=WXsK o W=(L,:L,))S;:8;),
where (L, : L,) is an orthogonal matrix such that M(L,)=M(CGV), S, is any solu-
tion (of full row rank) of L;CGVK =S8 X,K and S, is any solution of $,XpK =0.
After abtaining W, T can be solved for from (5.8). We thus have a characterisation
of the class of design matrices X such that every linear representation of the BLUE
of A under (Y, Xop, a2V} remains its BLUE under (Y, X5, a2V) also.
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