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Abstract: 1n his paper we study a robusiness propety of partlally balanced imcomplete block
designs based on association schemes with m classes (PBIBD(m)) against the unavailability of
daia in the sense that, when any ¢ (a positive integer) observalions are unavailable 1he design
remains conaected w.r.t. treatment. We characterize the robusiness property of PBIBD(m)
completely for m=2 and pantially for m=3.
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1. Introduction

The robustness of BIBD against the unavailability of data and w.r.t. the esti-
mability of parameters was studied in Ghosh (1982). In this paper we consider the
robustness of PBIBD(m). Cheng (1978, 1981) investigated various optimum proper-
ties of PBIBD(2). The rob of ¢ d bal d block designs against the
loss of one treatment and w.r.t. the large value of the ratio of a lower bound of the
efficiency of the resulting design to the efficiency of the original design, was con-
sidered in Kageyama (1980). The robustness in the work of Kageyama [s entirely
different from the robustness in this paper. This paper therefore presents a further
property of PBIBD.

PBIB designs were first studied in Bose and Nair (1939), association schemes in
Bose and Shi (1952), jation matrices and graphs in Bose and Mesner
(1959). The concept of connectedness in a block design which plays an important
role in this paper was introduced in Bose (1939). It seems particularly appropriate
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to present this work in honor of Professor R.C. Bose on the occasion of half a
century of his contributions in teaching and research.

2. The problem

Consider a block design (BD) with v treatments in b blocks. We can associate with
it a multigraph G in the following manner: the vertices are treatments; the vertices
i and iy are joined by A;;, edges if they occur together in exactly A4, blocks. It
can be seen that a BD is connected w.r.t. treatment if and only if the corresponding
G is connected.

In this paper we consider a special kind of block designs, namely PBIBD(m); the
parameters are v, b, r, k, A;, n; and p,’, (hjl=1,...,m). We are interested only in
a completely connected PBIBD(m), i.e. connected w.r.t. treatment and block. If
some observations in a PBIBD are unavailable the resulting design may not be
another PBIBD and, moreover, may or may not even be connected w.r.1. treatment,

Definition 1. A completely connected PBIBD(m) is said to be robust against the
unavailability of any /, & positive integer, observations if the design obtained by
omitling any / observations remains connected w.r.l. treatment.

Clearly, 1< r—1. It is easy to see that the edge-connectivity of G (j.e. the mini-
mum number of edges whose removal results in a disconnected graph) throws light

on the value of .
If any r— 1 observations are unavailable, then the maximum number of edges to

be removed from G is (r—1)(k—1). It is clear that if the edge-connectivity of G is
more than (r—1)(k—1), then the resulting graph and hence the design remain
connected. Indeed, the robustness problem as stated earlier is not identical with
finding the edge-connectivity of the graph G. The robustness problem will, how-
ever, be completely solved if the edge-connectivity of G Is always greater than
(r=1)(k-1). But unfortunately the edge-connectivity may even be less than or equal
to (r=1)(k-1).

Given an association scheme with v treatments and m classes, we define associa-
tion graphs, G),Gj,...,Gn as follows: the vertices are treatments; in G;, two
vertices are joined if the corresponding treatments are ith associates. Note that G;
is a regular graph of degree n;. We now state a conjecture.

Conjecture. Let each of the graphs G, i=1,...,m, for a given association scheme
with v treatments and m classes be connected. Then, the edge-connectivity of each
Gy is n;.

In Section 3, we prove the conjecture for m=2 and 3. In Section 4, we show that
the edge-connectivity of G corresponding to PBIBD(m) is r(k — 1) when m=2,3 and
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each of Gy, {=1,...,m, Is connected. We also give complete characterization of
robustness for m=2.

3. Edge-connectivity of association graphs
Consider an m-class association scheme with parameters v, n;, p,‘, (G Al=),...,m).
We recall the relation
Py = 1y = mip. )
Definition 2. For any ordered pair (i, /), | <i, j<m, i#j,
=L @
where m > 3.

Definition 3. For any i, | <i<m,
=% pp, ®
un

where the summation is taken over all (j,/), j#i, I#i, 1<j,l<m.

Definition 4. For any partition U,V of the treatment containing v treatments,
T,(U.V) denotes the number of ordered pairs (x, ) such that xe U, ye ¥ and x, y
are ith associates. When there is no confusion, we write 7; in place of T;(U, V). Let
a=Min{|U|,|V|}. Clearly a < $v. Furthermore,

4):. T,=a(v-a). @

Lemma 1. Forany (i, j), 1 €i, j€m, i#}, and the partition (U, V) of the treatment
sel, we have

254733 0} T, ©
Proof. Fix ij, i#J, (U,V) and let
S={(x52)|xeU, yeV, (x y) are ith associates and both (x,2), ,2)
are jth associates).
Since i #j,
1S =p;T;. ©

Now for any pair (x, z) such that xe U, ze ¥ and (x, z) are jth associates, there are
clearly pjj+p};=2p}, vertices y such that elements of one pair of (x y) and (%2)
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are jth associates and the other are jth associates, where y may or may not be In
V. Therefore

1] <2047}, o
and (5) follows from (6) and (7).

Lemma 2. Forany i, 1<i<m, m23, and the partition (U,V) of the treatment set
we have
,'r,-zzl):‘ 4T, ®

Proof. Fix i, 1€igm, (U V) and let
§={(x52)|xeU. yeV, (xy) are ith associates, (xz) jth associates,
(z y) hth associates, j#i, [#i}.
Here j may be equal to /. Clearly,
18] =1'T;. 9
Now given any pair (x, 2) such that xe U, ze ¥ and (x, 2) are jth associates, j #, the

number of y such that one of (x, ) and (), z) are ith associates and the other are /th
associates, where /#1, is equal 10 21/, where y may or may not be in ¥. Therefore

ISi2 L dT, (10)
Yol
and (8) follows from (9) and (10).

Theorem 1. For m=2 and 3, the edge-connectivity of G, is n;, i=1,...,m, i.e.,
T, 2n; for all i and for any U, V.

Proof. We consider the cases m=2 and 3 separately.

Cuse 1. m=2. Since G, and G, are connected, we have p% pH#0, ie
pla-ph#0. Let (U, V) be any partition of the treatment set.

(@) If a=[U[=1, then clearly 7,2 n;, i=1,2,

(b) If a=|U|=2, then ;> 1 and T, 22(n,- 1) 2 n;.

(c) Suppose @>3. We have v>6. If now T,<2m—1 for i=1,2, then

Jw-d)<aw-a)=T,+T,<2n +2m-2=2(v-2).
Thus v< S, a contradiction. Therefore, for at least one i, 7; > 2n;. Let without loss
of generality (WLG) T, >2n,. Then by Lemma |

2p1, Ty 2 P4 Ty 2 2mphy = 20, p)s.

Since p},#0, we have 7, > n,.
Case 2. m=3.
(a) Assume first that a>8. If for each i, i=1,2,3, T,<4n;—1, then by (4)
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we have
) )
8(v-8)<a(v-a) =‘):' T; s‘E (4m—1) = 4(v—1)-3,
. o

which implies that 4v € 57, which is not true since v 3 2a > 16. Therefore there exists
an i such that 7, 34n;. Let WLG Ty 2 4n;. Now by (1) and Lemma 2 we have

2P}y + P Ti+ 2Pk + PRI T2 > (Pl + Pl + Pl + PUIT,
24(ph+ph+ph+phOm = 4l(ph +pldn + (h +PhIm). (1)

Let, if possible, 1> =g}, + p}y+ ply+ 03 = 0. In G), consider two vertices a,b which
are Jrd associates. Since G, is connected, there exists a chain a=xg,x,,.... X, =b
such that x;, x;,, are Ist associates 0<j<n—1. It then follows inductively on j
that xg, X; are st or 2nd associates for every j, 1< j < n, contradicting xo, X, are
Ird associates. Therefore r*#0 and 7,22, for at least one f, i=1,2. Let
WLG 7,3 2m,. Again by connectivity the situation p,=0 and p},=0 can not
occur. If p},#0, then by Lemma 1, we have

29T 2 Ph Ty > 28hm = 2plan,.
Since pj;#0, we have T, 2n,. If p}, =0, similacly 7, > n,.
(b) Assume a<7. Fix any i and (U, V) with {U|=ag|V|.
(b.1) If n; > & then each vertex in U has at least (7, - a+1) ith associates in V
and hence

Tizalm-a+l)=(a-)n-a)+n>n,.

(b.2) Consider the case n,<a. We know pj; < m,~1. If p};=n;~ 1 then pj, =0 for
j=1,...,m, j#iand we have a subset with n;+ | vertices such that any two vertices
are ith associates. Thus G; is disconnected. Therefore pf<m;-2.

(b.2.1) If there is at most one vertex in U such that all its /th associates are in
U then clearly 7,2 a~1t > n;.

(b.2.2) Consider the situation where there are at least two vertices x, ye U such
that all their ith associates are in U. If there are no such x and y which are in
addition ith agsociates then there are n; ith associates of x in U and each of these
n, vertices has at least one ith associate in V. Therefore 7,2 n;. Let x and y be ith
associates; z),...,25, Where §=p}, be the vertices which are joined to both x and
Y, and zg,, ..., 2, _; (respectively Znp 2,410 ++2 Z2n, - g -2) DE the vertices adjacent in
G, 10 x (respectively y) but not to y (respectively x). We have

12a=|U|=2n-p) (12)

From (12) and p,’,sn,—l we get 2<m < S and p,', >2m-1.
Since p,', 20, we have 2p; 22n;-17, i.e., p,‘,>n,—4. Therefore

ph=m=30rm-2 (13)

We consider these two cases separately.
(b.2.2.1) Let pj=n;-2.
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@) If n;=2 then p};=0 and Gy, by connectedness, is a single cycle and hence
7,32

' (i) 1f ;=3 thenp,,-l Butp,,al implies n, is even. Thus n;=1 is even. Thus
m#d

(i) In case n;=4, we Invep,,-Z In G;, xis adjacent to y, 2, 7 and z;, and y
is adjacent to x, z;, 2; and z,. Considering (x,z)) and (5,), /=1,2,3, n;=4,
ph=2, and taking U= {x, ,2),22,25, %}, it can be seen that the vertices in U are
disconnected from the other vertices in G; and hence G; is disconnected; & contra-
diction. Thus m,#4.

(iv) If n;=S$ then p,,-3 and, in Gj, z, and 2y are /th associates of z), z; and z,.
One of z; and zy must be an ith associate of z). Assume WLG that z And 7 are
ith associates. But then x, y,z, and z; are /th associates of z; and 2y, i.c., pi=4:a
contradiction. Thus m#S.

(b.2.2.2) Let p,—n, ~3. Here, ;=3 or 4.

(@) If m;=4 then p,,—l and a=7. Let if posslble 2, and z; are ith associates.
Then y and z, are ith associates of x and z, i.e., p,,—2 a contradiction. Similarly
it can be shown z) and z;, j=2,3,4,5 are not ith associates. Taking (x,z) and
().24), it can be seen that (z,, 23) and (z,, 25) are ith associates. Moreover z; (respec-
tively ;) is joined in G, to at most one of z,,z5. These imply that 7;,26>n,.

(ii) If n;=3 then p,i,=0 and we get, from (12), 6 <a < 7. If T;=2 then, since the
sum of the degrees in any graph is even, the degree sequence of the subgraph G;(U)
induced by G, on the vertices of U with a=6is (3,3,3,3,3,1) or (3,3,3.3,2,2).
Since p}}:O, the former G,(U) is not possible. Consider G;(U) with the degree
sequence (3,3,3,3,2,2). Since no triangle is possible in G;(U), we may assume x is
adjacent 10 z;, z, and y; z; is adjacent to y, z; and 2,; 2, is adjacent to y and z,.
Suppose (z;, y) are jth assocla(es. (z|,zz) kth associates, (z),2;) /th associates with
ikl #i. Then pf, 3, p”—2 and p,,sl Since m=3, we have a contradiction. If
T,=1 then the degree sequence of G;(U) with a=7is (3,3,3,3,3,3,2). Now x and
y can be any two of the 6 vertices with degree 3. We may assume in G;(U), x is
adjacent 10 z, 2 and y; z, is adjacent 10 y, z; and zy; z, is adjacent 10 y, 7, and
255 2) and gg are adjacent. Let (z,2;) be jth associates, (2, y) kth associates and
(%, z5) Ith associates with j,k,/#i. Then p,/,=2, p§=3 and p,',= 1. We thus have a
contradiction. Therefore, for 6<a <7 and m;=3, T;=1,2 and hence 7; >n;. This
completes the proof of Theorem 1.

Hence our conjecture in Section 2 is true when m =2 and 3.

4. Robustness of PBIBD

Cosider a PBIBD(m) with parameters v,k A, n, 2y (hhl=1,...,m). We
have the relation

MA +mdy+ -+ npd, = r(k-1). (14)
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For any partition U, ¥ of the treatment set containing v treatments we denote by
a(U, V), the number of lines joining U with V. Clearly,

aU, V)= Ti+ 43T+ + 25T, (15)
T+ T+ +Ty=alp-a)2v-1=n+n+:+n, (16)

Lemma 3. If T, 2n;, i=\,...,m, then the edge-connectivity of the multigraph G
corresponding to PBIBD(m) is r(k -1).

Proof. It follows from (14) and (15), for any U,V with T, >, for all i, a(U, V) >
7k - 1). This completes the proof.

It follows from the results in Section 3, in case G;, i =1,...,m, are connected, the
edge connectivity of G corresponding to PBIBD(m), m=2,3, is r(k-1).

Lemma 4. T,>n; for at least one i.

Proof. If T;<n; for all i, then T+« + T, <n ++ +ny,, a contradiction to (16).
We write (15) as

aU,V) =a-a)d+ L (4-A)T;. un
jel
Therefore, we have

U2 (0= D+ 5 (h=A)T). (8
l.-l

il
We now solve the robustness problem completely for m=2.

Lemma S. Consider m=2. If T;2n; and ;2 A, i,j=1.2, i#J, then «(U,V)>
rtk~1).

Proof.  a(U, V)2 (v-1)A;+4;~-A)T;
2-DA+@=)ny = rk-1),
by (14) and (18).

Lemma 6. [f m=2 and T,#0, i=1,2, then a(U,V) > r(k -1).

Proof. If ply#0, ph #0, then we know a(U, V) > r(k - 1). If pl=0, p?, =0, then
it follows that n, =n, =0. Therefore this case is impossible. In case p}#0, p, =0,
we have pl,+pl=m -1, i.c., pl,=n,~1 and p}y=n,. Thus T, > 1+p},=n, and
T2 ph=ny. 1f ph=0, p#0, then p}y =, and ph=ny— 1. We get T, 2 phy =1,
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Ty 3 14 ph=ny. Therefore, a(U, V)3 r(k=1). This completes the proof.
Lemma 7. Consider the case m=2 and T;=0. Then, a(U,V)2(r~\)(k-1)+1 i
and only if mmA; 2 mA, —(k=2), j#i, ij=12.

Proof. If 7,=0 then p};=0. In this case v=m,(n,+1). The treatments can be
divided into m, groups of n, + | treatments such that any two treatments in a group
are first associates. We have a=c(n, +1), ¢ is an integer with 1 <c<{m,. Now,

a(U,V)=a(v-a)A;2(r=1)(k=1)+1 for all a=c(m+1), 1<cim,

iff

Mina(u-a)d, 2 (- 1)k -D+1=r(k-1)-(k-2),
i.e. ‘

(my + 1) nydy 2 md + mpAy—(k=2),
i.e.

mnyhy 2 mA - (k~2).
Similar is the case 7y =0. This completes the proof.

One can easily find an example of group divisible (GD) design not satisfying the
condition in Lemma 7. It is to be noted that the size of experiments for such GD
designs will be very large. It follows from Lemmas 3-7, the robustness against the
unavailability of any r—1 abservations of all connected PBIBD(2) except for GD
designs not satisfying the condition in Lemma 7.

Remarks. In case m=1 it follows from (15) and (16), a(U, V) > r(k—1). Thus the
edge-connectivity of the multigraph G corresponding to a BIBD is r(k—1). Hence
a BIBD is robust against the unavailability of any r -1 observations. However, the
robustness of BIBD against the unavailability of all observations in any »—1 blocks
does not follow from the results in this paper. This is done in Ghosh (1982).

Acknowledgement

The authors wish to thank the referee for pointing out some misprints in the paper.

References

Berge, C. (1973). Graphs and Hypergraphs. Nosth-Hollend, Amsterdam.

Bose, R.C. (1947). Presidential Address. Proc. 34th Indian Science Congress.

Bose, R.C. and K.R. Nair (1939). Partially balanced incomplete block designs, Sankahya 4, 337-372.

Bose, R.C. and T. Shimamoto (1952). Classification and analysis of pariially balanced incomplete block
designs with 1wo associate classes, J. Amer. Statist. Assoc, 47, 151-184.

Bose, R.C. and Mesner, D. (1959). On lincar intive algebras ding to fation schemes
of panially balanced designs, Ann. Moth. Statist. 30, 21-38.




S. Ghash, S.B. Reo, N.M. Singh! / Robustness of PBIBD 163

Cheng., C.-S. (1978). Optimality of certain asymmetrical experimental designs, Ann. Statist, 6,

1239-1261.
(heng, C.S. (1981). On the comparison of PBIB designs with two associate classes. Ann. Instituie

Statist, Math. DA, 155-164.
Ghosh, S. (1982). Robustness of BIBD against the unavaitability of data. J. Starist. Plann. Inference 6,

312
Kageyama, S. (1980). Robustness of connested balanced block designs. Ann. [nsi, Statisi. Marh. 32A,

25-261.



	355
	356
	357
	358
	359
	360
	361
	362
	363

