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Abstract: Considering non-equireplicate factorial designs based on the Kronecker product of
varietal designs, it is seen that the factorial effect efficiencies in such designs can be controlled
by suilably choosing Ihe initial varietal designs.
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1. Introduction

In recent years two broad methods emerged for the construction of factorial
designs: (a) factorial experiments in generalized cyclic designs (John (1973a,b),
Dean and John (1975), Dean and Lewis (1980); for a comprehensive list of refer-
ences see John and Lewis (1983)) and (b) use of Kronecker or Kronecker-type prod-
ucts (Mukerjee (1981, 1986), Gupta (1983, 1985, 1986), Mukerjee and Sen (1988)).
Both these methods lead to designs with orthogonal factorial structure (OFS) and,
if used appropriately, are capable of ensuring high efficiencies on the factorial ef-
fects of interest.

It, however, appears that these methods have so far been applied only for the con-
struclion of equireplicate designs. The same remark also holds good for most of the
classical procedures (see e.g., Voss (1986)). In general, non-equireplicate factorial
designs have apparently received rather little attention in the literature although
some work has been reported among others by Puri and Nigam (1978). One reason
may be that with unequal bers of replications it is hard to retain OFS and conse-
quently, an investigation on the factorial effect efficiencies as also the analysis of
the design itself, may become difficult. On the other hand, non-equireplicate designs
are of much practical importance simply because in most practical situations the
treatment combinations in a factorial experiment are not all equally expensive. In
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such situations, the use of equireplicate designs may become either 100 expensive o

wasteful.

In an attempt to (il up this gap to some extent, the present paper extends the
method (b) above to generate non-equireplicate factorial designs. The designs so
constructed may not have OFS, but most of the advantages ensuing from OFS are
retained. Thus (i) one can ensure high interaction efficiencies in the resulting fac-
torial designs by suitably choosing the initial varietal designs and (ii) the analysis of
the factorial designs obtained by the method is fairly simple. Sections 3 and 4 deal
with the aspects (i) and (i) respectively.

2, Notation and preliminaries

Throughout the paper, whether the design under consideration is varietal or
factorial, the fixed effects intrablock model, with independent homoscedastic
errors and no block-treatment interaction, is assumed. Let for 1sjsm, D, bea
varietal design involving s; varieties and having an s; x by incidence matrix N;. Let
Tjon Tjta -2 Tjg, -1 be the veplication numbers and kjg, Ky, ..., kjp, | be the block sizes
in D;. Let

= hnenlig-1)s k= KoKy Kip 1))

R; = Diag(rjou Fjts oo Fjs,-1 b K; = Diag(k;p, k1, .v..kjb’_,).
The elements of r; or k; are not necessarily equal. The usual C-matrix of D is then
(cf. Raghavarao (1971)) given by, say,

=R~ NN @
The efficiency with which a treatment contrast with the s; x 1 coefficient vector y;
is estimated in D is defined as
uj Ry u/ujCy uy if the contrast is estimable in Dj, @

otherwise,

where Cj is any generalized (g-) inverse of C;. Clearly, (2.2) is based on a com-
parison of D; with the corresponding (unblocked) completely randomized desiga
having the same replication numbers as D;. Note that (2.2) remains the same for

every choice of the g-inverse C;.
Let D be an s, X5y X+ X5, factorial design with incidence matrix

ejlw) =

N= é N, @3
i=]

where @ denotes Kronecker product. Let v=[]s;, b=[] 5;. Then the replication
numbers and block sizes in D are elements of the ux 1 and bx ) vectors r=
n®-®r, and k=k @ @k, respectively. Note that neither the replication
numbers nor the block sizes in D are necessarily equal. Let R and K be vxv and
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dx b disgonal matrices with diagonal elements given by the clements of the vectors
rand k repectively. Then by (2.1), (2.3), the C-matrix of D equals

m m
C=R_NK-lN'=QRI‘Q(R/‘Q)- 4
Let ¢ be the ux 1 vector of treatment effects in D, arranged lexicographically.

Analogously to (2.2), the efficiency with which a treatment contrast 1’7 is estimated
in D is defined as

IR-l - ‘fl N . .
o) = {u u/u’C~u if the contrast is estimable in D, 29

0 otherwise,
C" being any g-inverse of C. It may be seen that in D all main effect contrasts are
estimable if and only if each of Dy, ..., D, is connected. It is, therefore, assumed
hereafter that each of D,,..., D,, is connected. This implies the connectedness of D
and ensures the existence of the matrix inverses used in this paper.

3. Lower bounds for lnteraction efficlencies

The following lemmas will be helpful. The proof of the first lemma is straightfor-
ward while that of the second lemma follows essentially along the line of Rao
(1973, pp. 70). The column space of any matrix A will be denoted by #(A).

Lemma 3.1 For 1sj<m, let A;, By be non-negative definite (n.n.d.) matrices such
that A; - By is n.n.d. Then

is n.n.d.
Lemma 3.2, Let A, B be n.n.d. matrices such that A— Bisn.n.d. Then 4 (B) C #(A)
and for every vector u€ #M(B),
wB uzu'A"u,
where A™, B~ are any g-inverses of A, B respectively.
For 1.5 j<m, let u; be any s; x 1 non-null vector satisfying /1, = 0. Let T be the

set of all m-component non-null binary vectors. For any x=(x,, ..., X,) € T, define
the yx 1 vector

ut =

) 6.0

Xz
&

]
where ulf=u; if x;=1, =1, if x=0. Then «*7 represents a typical contrast
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belonging to the factorial effect Fil..-F3= (cf. Mukerjee (1979)). The following
theorem sets a lower bound for e(u*) and demonstrates that even in a non-
equireplicate setting, high efficiencies with respect to contrasts belonging to fac-
torial effects in D can be ensured by suitably choosing the initial varietal designs
Dy,...,Dy.

Theorem 3.1. e(u")zmu,_.,,..e,(u/). Jor each xeT.

Proof. For 1<j<m, let

m m

L=@L, W=QW, (3.2)
where J=1 Jel

Ly=Wy=R, iff+j; Ly=C, W;=R-C, (3.20)
Note that for each j,

m
Li=® R~ W,
’J j@ ST

so that by (2.4),
m
C-L;=W;- /®1 (R-Cp, 3.3

which is n.n.d. by (3.2) and Lemma 3.1.

Consider now any x=(x,, ..., X,) € T. Without loss of generality, let x; = 1. Then
by (3.1), (3.2), w*e M(L,). Since by (3.3), C-L, is n.n.d., it follows from Lemma
3.2 that

WO su Liu* = o (CT @Ry @ - @ Ry
=(u{Ci u;)x [}f]2 (uf/)’R]'uj'], (.4
using (3.1), (3.2). But by (3.1), noting that x, =1,
R = (] R ) [/ﬁztuf')'ki'u?}
Hence by (2.2), (2.5), (3.4), e(w*) e (u)). Similarly, it may be seen that e(u)2
¢,(u)) for every j such that x;=1. This completes the proof.

Remark, Theorem 3.1 extends the basic ideas in Gupta (1986) and Mukerjee (1986)
10 a non-equireplicate set-up. Since the initial designs D), ..., D, are left quite ar-
bitrary, the method of Kronecker product is capable of generating factorial designs
with a wide range of parameter values. Moreover, by Theorem 3.1, in the factorial
designs so constructed the efficiencies with respect to contrasts of interest may be
kept high by an appropriate choice of D), ..., D,y. In fact, as examples reveal, very
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often one gets the satislying observation that the actual value of e{u*) is much
higher than the lower bound given in the theorem. Theorem 3.1 holds good even
when one ider designs for multiway elimination of h ity. This follows
because in such a setting the matrices corresponding to those in (3.3) remain n.n.d.
The detalls, which involve use of projection operators along the line of Mukerjee
and Sen (1988), are omitted here,

4, A computation of C~

It may be seen through examples that non-equireplicate Kronecker factorials rare-
ly have OFS in the sense that they do not satisfy the necessary and sufficient condi-
tion for OFS stated in Mukerjee (1979). Still then, a method for computing a
g-inverse of C, which does not require the inversion of large matrices, is available.

For 1<j<m, let Z; be an (s;- 1) xs; matrix such that (g;7, Z/)' is orthogonal,
where g; = (r/r))"”2 For x=(x),...,x,) €T, define

m
z2,=Q z}, (4.1a)
where =
Z, ifx=1
Zp=g 9 T 4.1b
d {1,' if x5 =0, @1

Let Z=(irZhyoYoer (€8 for m=2, Z=(Z Zin Z))), 1=0,@ @1,
2°=(1,Z').

Lemma 4.1. The vxv matrix Z * is non-singular.

Proof. Follows by observing that Z*=Zp® - ® Z3, where Z?=(1,. Z;Y (1 <jsm),
and that each Z? is non-singular by the definition of Z;.

Lemma 4.2. For every x,ye T, x#y,2,CZ,;=0.
Proof. Follows from (2.4), (4.1), noting that Z;r; =0, C;1;=0 (Isjsm).
Theorem 4.1, A g-inverse of C is given by C™ = L, .7 ZUZ.CZ}) ' Z..

Proof. Note that for xe 7, the non-singularity of Z,CZ; follows as usual from the
connectedness of D. Define the v x v matrices S=Diag(0,...,2,C2Z5 .. he7r $*=
Diag(0, ...,(Z,CZ;)”, ... );¢ 7- Since C1=0, by Lemma 4.2, Z*CZ* =S and hence
by Lemma 4.1, C=Z*"'SZ*%~'. Also, C~ as in the statement of the theorem
equals Z*'S*Z*. Hence, clearly CC~C=C, as desired.

Remark. Observe that for each xe T, Z,CZ; is a square matrix of order [} (s;~ 1)%
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(=a(x), say). Hence by Theorem 4.1, the evaluation of C~ requires inversion of
matrices of order a(x), xe 7. This may lead to computational simplicity since the
numbers a(x), xe 7, will be much smaller than v, the order of C. It may be seea
that Theorem 4.1 remains valid even in a set-up for multiway heterogencity
elimination.

While concluding, we mention the following open p in the context of noe-
equireplicate factorials: (a) role of partial OFS (see Chauhan and Dean (1986)), (b)
construction in generalized cyclic designs, (c) connexion between efficiency-consist-
ency and OFS (for the corresponding results in the equireplicate case, see Lewis and
Dean (1985) and Mukerjee and Dean (1986)) and (d) use of Kronecker-type products
for construction in designs of smaller size.

L
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