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Multivariate Power Serles Distributlons
and Neyman's Properties for Multinomlals

J. K. GHos,* Bixas Kumar SiNkA,' AND BiMaL Kumar Sintia®
* Indion Statistical Istitute and University of Pittsburgh, and
t Calculta University and Federal University of Bokia
Communicated by C. G. Khatri

A problem of J. Neyman (in Classical and Contagious Disrete Distributions
(G. P. Patil. Ed.), 1965, pp. 4-14) regarding a charscterization of positive and
neganive multinomia) distributions is studied in this pupcr. Some propertics of
multivariate power series distributions in general which should be of inde-
pendent interest are lso derived.

I. INTRODUCTION AND SUMMARY

Neyman (4) obtained a number of i ing propertics of the multi
negative binomial distribution and raised the question whether the propertics
that he had found characterize this distribution. It is easy to see that the same
prupertics also hold for the positive muliinomial distribution. M i
the properties hold for X, ..., X,, they also hold for Y,..., },, where
¥, =aX, 35, l = k. Hence, the interesting qumm is whether
quu\:,., ize the two multinomials and distributi
obtained from them by lincar transformations of this type. But to make this
question meaningful one first has to definc what is meant by a family of distri-
butions. This has to be done in tuch a way that the multinomials will occur
a8 special cases. In the present context the following definition which is a slight
variant of that of Sinha and Sinha (6] scems to be a reasonable one. For each »
in sume index set N, Jet af..i, >0 for (fy ..., i) € 1% = 1 % - x 1, where I
is the set of nonnegative integers. Let W, =((8,...,6,): 6, >0, i = ...
wdY, &% 00 0t < o). For cach 0 I, let
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398 GHOSH, SINHA, AND BINHA

Consider f(iy ,..., iy | 7, 8) = a]...., 8t - 6}/c(6) and let P(-, n, 8) be the corre-
sponding probability measure. Let @, ={P(-,n,0),n€e N, 0 X,}. Similarly,
for w€ N consider a7, >0 and define snalogously a class of probability
measures P,_, and continue this process to finally introduce 4], >0 and
define P, . The A-tuple (#,, Py ... P,) is called a A-dimensional family.
Thus if we take N as the set of posilive inheg:n and for each positive integer

neNletal.., =malfil il (x =iy — - — igland define 6, = p,J{| —Tioh
wnh 0 <p4. i= l. . K Z:p, 1, then \vc gel the k-dimensional filmly
ing of k-vari (A—l‘ iat bivariste, and uni

positive multinomials.
Similarly, if, as before, we take N as the set of positive real numbers and for
each n, let
. _+¥ii—1p
G = T (n= 1)
and define 6 = a/(1 + 5} a,), fora, >0, = I,..., k, we get the A-dimensional
flmily oomisling of k-vniale. (k — 1)-variate,..., trivariate, bivariate, and

Hereater the above two families of pnuuvc and negative multinomials a8
well as those obtained by lincar fi Yi=aX;+8,,i=1..4
are referred 1o a8 the family of multinomisls. We can now state the properties
enjoyed by the k-dimensional family of multinomials.

Let a k-dimensiona| family be given and let the joint distribution of X, ,..., X,
belong to #, . Properties P| to P4 may be described in the following way.

Pl The marginal distribution of X, ... X, (1 <i < <in<Ak
I < m < k— 1) belongs to the class 2, .

P2 The conditional distribution of X, ..... X,_ glven Xy =% X, =
x;, belongs to the cluss. #,, and depends on the :, l only lhmug‘\ p R r,.
WhETE (i ey 1y oo ) A7€ 8 permutation of (1,..., &

P3. The regression of X, on X, e X, (..; 1) is linear, where
((AA S Yot { I 0 )8

P4. Define
- L -yeem,
= Z xI‘ y Yy = z Xl,-u-- Y, = Z X’.'
t=l Loy +1 lomyee-om, 4t

where Yy m, < k and (i, ..., imgtram) € (10, k). Then the joine distribution
of ¥, ,..., ¥, is again a member of the class 2, and satisfies P1 to P3 with k = 5.
In an enrhcr pnper. Sinhs and Sinha (6} unlued tl\: pmpemes relsting to
to ize forms of i ices of the
underlymg parent distributions. Interuungly enouxh the only two types of
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dispersion matrices so derived were found to correspond formally to those of
multinomials. This opens up the possibility, in view of [3), that at least within
the class of power series distributions these may be the only distributions
h ized by these regression p: It turns out, h , that is not
true,

In fact we construct new bivariate (Sect. 3) and trivariate (Sect. 4) families
satisfying all of Neyman's properties except part of P4 (namely, that the distri-
bution of X; + «* + X, belongs to 2,). One of the bivariate examples is used
in the construction of the trivariste example. It may be noted that if all the
properties listed by Ney are to be ingful, the di jon k must be
greater than or equal to 3. These examples notwithstanding, it scema likely
that within the class of power scries distributions, the multinomials are charac-
terized by the following propertics.

P

Ql. The regression of X, on the ining variables is a linear function
of the sum of the remaining variables.

Q2 The distribution of X, + '+ 4- X, is of the power series type.

If true, this conjecture would certainly solve Neyman's problem since QI
and Q2 obviously require less of X, ,..., X, than P] to P4. Under the condition
that Py(Xy + - + Xy = 0) and Pg(X, + - 4 X, = 1) are strictly positive
the conjecture is proved in Section S.

2. PRELIMINARIES

In this section we establish some properties of power series distribution that
follow from linearity of regression. For simplicity we consider the case of three
variables. Let X, , Xy, and X; be three discrete random variables defined over
B, having the power series p - f.

PyXy =1, Xy = j, Xy = k) = a,8,'0,/8"{f(6), (21)

where f(8) =Y 0 aindi'00,", ay >0, (ij,R)el, 6;,0,,6,>0 Let
0 =(0e R f(8) < o). We assume in this section that #, C interior of £2;
this justifies the interchanges of differentiation and ion made in the
proof of the proposition stated below. More generally, we could have assumed
O, C the closure of the intersection of X} and the interior of 2; one could then
first prove the proposition for X, N (interior of Q) and then extend it to X by
taking lLimits.

PROPOSITION.  Suppase that the following holds.
El.(Xx 1 Xy=4 X= k) = o(6) +ﬂl(ol)(j + k). (2.2)
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Then (a) the marginal bivariate distribution of Xy and X, is of tha power series
type, and (b) the conditional distribution of X, gioen Xy = j, Xy = b, which it
(trivially) of power sevies type, depends only on (f + K).
Proof. Ta prove (s), note that, by definition, (2.2) implica
);h.,w,'/); byt = mBr) + RG] + 4)
= 0,(d|d8,) log E)‘: 'm’l‘l =a(8) +B(6)U + B
> Yagbt = AG) - (BEN*: - i k) forsome A(8) >0,
' BB) >0, (k) >0
= Py =) X = B) = (L anby) 662 /(9)
i
= < k) 663" £(0), @3
where 6,* = 0,8(9,), 6,* = 6,B(8,), f *(6) =/(6)/A(8,). This proves (a).
To prove (b), note that the generating function of the conditional univariate
power series distribution of X, given X, = j, X, = &, defined by
¥0,, 54, 8) = Ea,(“" 1 Xy =4, X, =4
satisfies
s> (djdsyhog (B, , 3, j, k) = E.‘,(X, | Xy =7 Xy =h)
= m(fy) + A6 + &)
by (2.2). Since {6, , 5. j, k) = | for s = 1, (24) implies
(0,55, k) = $0,,5.) + k),

(24

thereby proving (b).

Remark. Note that a sort of partial converse of the proposition is valid in
the sense that the validity of (2.4) implies that of (2.2). This can be proved
using [2, p. 11, Lemma 1.1.2],

Note, further, that if X, , X,, and X, have a power series distribution as
given in (2.1) then as noted by Patil [, p. 184] and Bildikar and Patil [I,
Theorem 4.1), the margina! distribution of X, and X, is of the form

Py(Xy = j, Xy = k) = 8,%6"K(6, . j, D))/ (8),
which is of the power series type in our sense iff 8, is kept fixed or A(9, , , &)
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an be expressed aa A6, Y{B(8)) {c(8))* «(j, k). That the fatter property is
valid under linear regression follows from our proposition.

Suppose further that the marginal bivariste power series distribution (2.3)
of X, and X, satisfies

En(Xa| Xy = B} = ar{By?*) + A{6a" D0 (25

An snalysis similar to the one given above under (a) then immediately says that
the marginal distribution of X, is again of the power scries type.

3. Case oF Two VARIABLES

We first construct in this section a series of examples of joint discrete power
series distributions of two variables X, and X, , each with the values 0, 1, 2, and
each having lincar regression on the other. We take up a power series distri-
bution

Py(X, =i, X, =j) < a,887; i,j=0,1,2, (3.1)

and assume that the distribution is symmetric, i.e., ¢y = a;; 2> 0,4,7 =0, 1,2,
8 >0, 8, > 0. In order to exclude trivial cases, we subject them to

Tay>0 foresch j=0,1,2 32)
]

The regressions of X, on X, are given by the expressions
EX0 1 Xy =j) = (anh + 2058 {a + anby + aufi®).  j=0,1,2. (33)
If the regression is linear, i.e., Ey (X1 1 Xy = j) = of8)) + B(6,) ], then (3.3)

leads to three equations in « and 8. El ing a and , we find that the con-
sistency requirement connecting the a,'s is given by

EX, 1 X, =2) = 26X, | X, = ) KX, | X, =0)  (34)

identically in 8, , which yields the equations

2004800y = ai(ootss + Tue)s (34.1)
20y,(Gotin + Ontyg + Gla) = y,(Teers + ) + doattaalia s (342)
Gty = Gy (3.4.3)

40i00xtn + ani@19052 + Oyas) = WoralOontts + G + Gura), (3.44)
2ty 04y = y(03100s T 11000)- (3.4.5)
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We first indicate the nature of the solutions involving some of the a;'s &
ze708.

() 2= ay =0, 2 =2y, 20,8y = aly, 33 > 0, 3 >0.

(i) = =0, 2y =ay/Aa, Gy =a} /2. G>0, ag>0
(yielding the trinomial distribution of X, , X, . and 2 — X, — X,).

(ili) @y = ay = ay, =0, ag > 0, @;, > 0, a5y > O (yielding yet znother
trivial solution).

Next assume all a,'s are positive. We may add one conventional equation
Y¥Ya,=1 (3.:5)
(]

It is easy to obscrve now that (3.4.3) together with (3.4.1) implies (3.4.5), and
(3.4.3) together with (3.4.2) implies (3.4.4). Hence, only (3.4.1) to (3.4.3) and
(3.5) are to be considered. Now

(343) = ayy = ay(anlax)"?
(34.1) = ayy = (63200000} {0m + (00 ™),
(342) = 2y [2000s; + ay{0rs)arg)' ™ + o}
= {0/200802}0a + (G} ™)' + d0gonps(Oaslane);
ie.,
Yag — (auan) ™)' + 2031(0raf2ce)*™ = {0} 230} {cs + (B} ).

This yields a cubic equation in gy, of which the solutions are a5 = a},/day
and ggy = (Gee2ys)'® (with multiplicity 2). For o = a,/da,,, we have
ayy = 2{(d/40) + (Gactn)'"}, @14 = (By/ 200K 20e2e)!/* while from (3.5), we
have, further,

g = {l — (2} — ay (2} .
Henee, one soluton is

a0 (>0))
ay (>0)f
Gop = ‘:x/‘“u f
s = (1 — (@' — ag,/(age) Y,
Uiy = Gy g * (Qyeass)' 2,
@y = 0311200 + gyt

subjectto (200" + agyf(ape)'? < 1;

(36)



Set dog = pao Bnd a; = 29y, Py With Py + 2Py < 1. Then the solution becomes

O = Pla. Oy = WwPus AT P O =Ph. ;
(3.6)
Gy =20 pys @y = 2APa + P Pi)

where pog 4+ 2P 4 py = 1.
This solution can be identified ss the one g d as s twofold convoluti
of the juint discrete distribution whose g ing function is

Gty 1) = (P + Putr + Prafy + putits)  With po = py.

In this connuction see Remark | at the end of Section 4.
Another solution is obtained by setting agy = (2q02m)'/ and here we get

::E:g;: subject 1o {apg)"™® + ay g < 1
gy = (Bpan)' %
= ”:n/ﬂu.

a.n
Ay = agy(ayl0)' ",

ap = (1 — (a)'" — dmf{200)' ")

Thus we have succeeded in characterizing all possible forms of a bivariate
discrete power series distribution of two variables .X; and .\ each with the
values 0, I, 2 and exhibiting linear regression of X, on .\, and of X, on X,
(due 10 symmetry).

Let a,8,°8,//¢(6, . 8;) be one such distribution. Observe that, in view of the
results of Section 2, the linear regression of Xo(.X,) on .Y,(.Xy) implies that the
marginal distribution of X}(\X) is of the power series type. Let N = (1,2, 3,4, 5),
ofy =a,.n =105 andasinSection ], define Py as {P(*, n,0), ne N, 0 ¢ ).
If we now ider the univari; ginal power series distributions of .\
and X, , and the conditional univariate power series distributions of .\; given
X, =0, ), and 2, we get a collection of five univariate power serics distributions.
These five distributions indexed arbitrarily by n e N will constitute &, . Since
@ =ay,ij=01,2 it ia clear that {#, , P} satisics the properties PI, P2,
and P3,

4. CasE oF THREE VARIABLES

As in Section 3, we first construct an example of a joint discrete power series
distribution of three variables X, X, , and Xy, each with the values 0, I, 2,
such that
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E (X1 Xy =, Xy = R) = oy(0) + BH0X7 + K),
By afXy | Xy = J) = {8y, By) + Byl6y , b)),
EyalX + Xa| Xo = B) = ool6y, 0) + B0y 00k, 4D
Ep(X) | Xy + Xy = 1) = a(6)) + Bi(6)L
Let
Py(Xy =i, Xy = j, X, = k) = Py o€ 2,20,6,'6,", 42)
where 2y, >0, g, is symmetric in the arguments i, j, k, 6, >0, 6, >0,

8, > 0, and moreover, to exclude trivial cases,

Y an>0 foreach i=0,1,2 (4.3)
]

We utilize some of the results of Section 3 to derive proper relations connecting
the a;'s so a8 to satisfy (4.1). Toward this cnd, we first write the marginal
bivariate distribution of (X, , X,) as

PdX, =i, X, =j] = P} c 4,58/, @4)

where A, = (a0 + 633, + Btayp); i, =0,1,2. Now note that (4.4) is
required to satisfy the property of hnunty of regrmon of \’, on X,. This,
however, i diately reveals all p the A,'s 28
discussed in Section 3. In pamcuh.r we take up solution (i) with some of the
Aj's as zeros. Thus, we get

(2) Ay = Ay = 0identically in 6, > 0, which gives
Qogg = gy = dggg = 0,
gy = oy = 0.

{b) Ay = 24 . However, in view of (4.5), this yields a,,f + ayfs' =
,* identically in 8 > 0 and hence we derive

4.5

ay =0,
Ay = ey .
(c) 24,4y = A%, This sguin, in view of (4.5) and (4.6), yiclds
22,30 + Gyeady + 2y’ = (Guas + 1"

identically in 8, > 0, from which we derive only one more equation,

@46)

284845y = gy -
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Thua, finally, we may conclude that a choice of the a;,'s such ss

fus = Ogo) = Ggoq = Ogyy = gy = ayy =0, >0, 4, >0, @7
an >0 G >0 Gy = Wy, 2yl = dly

will lead to linear regression of any variable on any other variable in their
bivariate marginal distribution (because of symmetry of the a,'s). It is easy
to verify that this solution is nontrivial in the sense that there do not exist
multinomial variables Y, , Y,, and Y,, and two constants a and b such that
X, =a¥,+b,i = 1,2, 3. Now we work out the regression of X, on X,and X, .
For this, we prepare the following table of P(X, = i| X, = j, X, = A}, using
@n

ikoq Conditional probability of X, : P{X; =i | X, =j, X; = &}
02 2 I

[ ) 1

P, P
12 (1.2 i Tms
.2 (Pm + Pyy’ Py +Pm)

Poy Py -] \
2100 (R BT P P P P P

It is now casy to verify that with

{2414 + 6,0109)
9,) = St 1 S}
ulh) ay + Oy

and By(6)) = —apflays + biay).
Ey(Xy| Xy =j. Xy = k) = (0)) + B(OXj + )

in view of )y = 22400 and 24,;,8,,, = alyy , as listed in (4.7). Thus, a choice
of the a;,'s such as (4.7) will meet the first two conditions under (4.1) and
hence all the conditions under (4.1). Consequently, in view of the results of
Section 2, the marginal bivariate distribution of any two variables is of power
series type, the marginal univariste distribution of any single variable is of
power serics type, and, trivially, the conditional bivariate distribution of any
two varisblcs given the third is of power scries type and the conditional univariate
distribution of any single variable given the other two is also of power series
type. Also, direct computation shows that the bivariate distribution of
Y, = X, + X and Y, = X, is given by

PY, =i, Y, = j) «c A28*4),

where 6% = 8,0,/(8; + 6), A% = g, Afy = 1y, A% = Gyeys Ay = lygs,
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A} = )4y, and A} = 4y . This is certainly of the same form as (4.2), except
for symmetry of the A})'s, which we do not necd here.

{f we now start with any power series distribution satisfying (4.1) and construct
(2, .2, ) in the same way 21 in the last paragraph of Section 3, then
(2, #1.#y) will have all the propertics Pl to P4 except for the part of P4
relating to the distribution of X, + X, 4 X, .

Remark 1. Let {X{", X", X{"), i = 1,.., N, be independent copics of 2
triplet (X, , Xy, ;) satisfying (4.1). It ia then easy 1o verify that the distribution
of the N-fold convolution (Z, , Z,, Z,) where Z; = L‘_, X =123 1ls0
satisfies (4.1). We can then use this to construct new families satisfying Neyman's
properties except for the part of P4 relating to the distribution of the sum

Z+2,+2.

Remark 2. Let V), ¥,, and Y, be independent Poisson varisbles with
the means A8, , A8y, and A8,8,, respectively (X's fixed). Define now the two
random variables X, = ¥, + ¥, Xy =Y, + ¥,. It is easy to verify that
the bivariate discrete distribution of X, and X, satisfies the property of having
lincar regression of one variable on the other. We can therefore construct
a bivariate family satisfying Neyman's propertics except, again, for the part
of P4 relating to the distribution of the sum of the variables.

5. CHARACTERIZATION OF THE MULTINOMIALS
Let X, ,... X have a joint k-variate discrete power series distribution with
the p.f.
PyXy = iy yoey X = ) = @y g, 632 - Of(0) (5.1
where a; ..., >0, (1) ..., i) €1% 6y ,..., 6, > 0, and

18 = Z‘ @y 85 O

[t

We assume | f(8)| < o V8 in a sufficiently small neighborhood of the origin.
This justifies (5.5), (5.6), and (5.7), at least for sufficiently small 8, which is all
that is needed in the proof of Theorem 5.1 stated below.

‘THEOREM 5.1.  Under the conditions a,..., > 0 and ay5..4 + ** + 2g..n > 0,
properties Q! and Q2 characterize the multinomials.

Proof. Obviously property Q2 implies
B DU (0) = BmIe®)" A®),  m 30 ()

Aot dymim
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For m = 0 and |, (3.2) implies, under the ssumed conditions, f(8) A(8) =
5.o/)0) and () = T1 8, = T} 0/ (say) with 8, = c8,, i =1,.,k and
6 = 1. X0)/0y... H1).... & = 4. 05(0)/ty..g(1). Reparsmetrizing and de-

noting 8,"'s by 8,'s, we can write (5.1) as

PyXy = b Xp = i) = .llu-l.o:' aﬂl'(‘) (5.3)
0 that Q2 will imply
2 .
T Byl olr = com) (£6) for some conmpant¢* >0
ee-dlpmm 1

~eb(S0) (54
Note that (5.4) implies
09/00, = BY[o6,, forall i ). (59
Now property QI implies
;.i‘b“""":' o:-/; B0 o 048 = of6) + BBXiy + - + )

= Z ixbyen .. 0 = affy) ): 5‘1‘“‘.011...0'..
Gk ety

X a:: . 0‘..
1]
= [B— ey o] - (1YoH®) = ol8),  using (54)20d (53
L] k

= (38) = «0)/(6 - M0)%0). 56
where n = (1/§) - (3/98,). We now use the fact that 8n/56, w= 3908, for any
i % 1. This gives, in view of (5.6),

L] L]

“(0) [0, - s 30 — ot [1 - FEIT0] = it A0

> €(0)6,— 0) = afB)B0) and o) B(6) ~ ) AE) = 0

= didd, (oB)BO)) = O and  (dIdB)B/olB)] = —(B)/ot8)

= B0) = cofd) and Byal) = —chy +d
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for some constants ¢ and d. Therefore, (5.6) reduces to

. .,(io,) = 1/(4—;):20‘);

L
(didE) log $(€) = \/(d — c€). € =30,. (57
1

Since ..., > 0, log ¢ is analytic at the origin. This and (5.7) imply d # 0. So
WO =L-(1 +(¢ed)y! for d 0, (5.8)

where £ = —1/c and L is a constant (independent of £). Since ¢ is the generating
function of b’."". . which are nonnegative, L >0, d > 0, and ¢ is either a
positive integer or a negative real number. From (5.8) one can get the b, ....’s
and hence the a,l...,.'s in terms of L, d, and & It is trivial to check that (5.1)
reduces to 2 positive or negative multinomial according as £ is a positive integer
or a negative real number. This completes the proof.

Remark.  Our examples in Sections 3 and 4 show that QI individually does
not lead to a characterization of the multinomials. [t is easy to construct examples
to show that Q2 also individually does not do so.

The main problem now is to characterize all power series distributions which
satisfy Q1 and Q2. As a generalization of this we may, as in [1], replace power
series distributions by exp ial distributions in Q2 and try to characterize
all exponential distributions having properties QI and Q2. It is clear that the
multivariate normal, with the mean vector taking arbitrary values and a fixed
digpersion matrix satisfying the conditions of Sinha and Sinha [6] is an example
of this sort, Are the multinomials and the multivariate normal of the above type
the only examples ?

REFERENCES

(1] Bioikar, S. anp Patie, G. P. (1968). Multiver ial-type distrib
Ann. Math. Statist. 39 1316-1326.

(2] Kacan, A, M., LINNIK, Yu. V. anD Rao, C. R. (1973). Characterization Prodblems in
Mathematical Statistics. Wiley, New York.

(3] Knatai, C. G. (1959). On certain properties of power-series distributions. Biometrika
46 486-490.

{4] Nevman, J. (1965). Certain chance mechanisms involving discrete distributions. In
Classical and Contagious Discrete Distributions (G. P. Patil, Ed.), pp. 4-14.

[S) Patie, G. P. (1965). On multivariate generalized power series distribution snd its
application to the multinomial and negative multinomisl. In Classical and Contagious
Discrete Distributions (G. P. Patil, Ed.), pp. 183-194.

(6] Snna, B. K., AND StNHa, B. K. (1976). On a cheracterization of the dispersion matrix
based on the properties of regression. Comm. Statist. A 5 (13) 1215-1224.




	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408

