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Multivariate Nonparametric Tests for Independence
BivaL Kumar Sinwa® anD H. S. Wreann'

University of Pittsburgh
Communicated by P. K. Sen

lizati of Bhuchongkul's bivariate rank statistics
[4xn. Math. Slah.ll 35 (1964)) have been introduced and studied in this paper
for the purpose of testing multivariste independence. It is shown that the test
statistics can be expressed os rank statistics which are casy to compute, have
asymptotic normal distributions, snd can detect mutual dependence in alter-
natives which are pairwise independent. The tests are compared to the Puri~
Sen-Gokhale (Sankyhd Sev. A 32 (1970)] tests and a normal theory test
[Anderson, “An Intreduction to Stetistical Analysis,” Wiley, 1958) using Pitman
efhciency.

1. INTRODUCTION

Nonparametric tests of bivariate independence have been dlscused by

statisticians for more than 50 years and P ic for
testing bivari pend are available. H very little has been
written regarding nong ic tests of independ involving three or more

variates. Two notable exceptions are papers by Blum ef al. [4) and Puri ef dl. [8}.
The former paper introduced the idea of using functionals of the empirical
distribution function to detect dependence. In particular, two statistics—one a
generalization of a Kolmogorov-Smirnov statistic and the other a generalization

of a Cramer-von Miscs statistic— were introduced. The statistics appear to
have excellent power pmpema, but are not eully computed, and do vot have
known asymp distributions under the hypoth hence at the present
time are not very practical. The statistics proposed by Puri et al. are generaliza-

tions of Jinear rank statistics. These statistics have known asymptotic distribu-
tions, are fairly casy to compute, and in fact are useful for many problems.
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However, the statistics are cssentially designed to test pairwise independence
snd will not detect mutual dependence if the variates are pairwise independent,
Our object in this paper is to i ltivariate tests, using generalizati
of Bhuchongkul's rank statistics, which are easy to compute, are designed to
detect mutual depend and are asymptotically normal under both the
hypothesis and altcrnative. In Section 2 the test statistics are defined and their
ssymptotic normality is proved. In Section 3 we compare our test statistics to
other known test statistics using Pitman efficiency and discuss some advantages
and disadvantages of our tests. This section also includes examples of alternatives
which have mutual dependence but pairwise independence for which our tests
are consistent but the Puri-Sen—Gokhale tests and the standard normal theory
test are not.

Remark. In a paper which appeared while this paper was being revised,
Simon [11] considered a multivariate generalization of Kendall's tau statistic
which is also nonparametric. He showed how the statistic could be used for data
reduction. It does not appear that this statistic is applicable for the problem we
are considering, but a careful reading of his paper may show otherwise.

2. THe Tesr Sratistics AND THeIR AsYMPTOTIC NORMALITY

Let X/ = (X5 X)) j = louym be n iid. rv.'s having a p-variate
continuous ¢.d.f. F(x), x € E*, the Euclidean p-space. Let the marginal c.d.f.'s
of X} ,.... X, be denoted by Fi(x,),..., Fy(x,), x;€ E, i = I,..., p. We consider

the problem of testing the null hypothesis that the varigbles X, ,..., X, are
mutually independent, i.e.,

»
Hy F(x) = [] Fi{x)),  forall xe Er. 2.1)
il
Define the empirical marginal c.d.f.’s based on the x,'s
| & .
Fule) =5 Y wsilou)  w€E 0= p 22
i
and also the empirical joint c.d.f.
l » P
Fo(x) = . Y Mcxeaixi)  xeEn (2.3)
jo1 12
Note that for p = 2 Bhuchongkul’s statistic Ty, is given by (Bhuchongkul [3])
S0 = 1 ]| JulFuae) JFu) s )

where the [,,'s are suitably defined score functions.
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As a generalization of this, we proposo the following statistics to test the gull
hypothesis H,:
590 = 0 {[-f Jullude) + JolFontes) o)
- (24
= ”-(»llll i r’[ ]‘-(R“),
J=t (=1

large absolute values of S”(J,) being significant, where R, is the rank of the jth
observation among the n values of the sth vasiate, j = I,...,#, § = I,..., p, and
the J,,'s are score functions satiafying some conditions stated below.

Asymptotic normality of S{(J.). Define I,y = (£:0 <F (x) <1}, i=
Ty P
Tusoran 1. If

(1) Jdu) = limy g Juali), § =1, p exist for 0 <u <1 and are mot
conslanis,
Q) fromot AL JoalFeal2)) — TTig JAF (%) dFufx) = o,{-13),
() Ju(l) = ofs2n), i =1,..,p,
4) 1JA0) < Kls(l — u)]= for ome 0 <& < 1/2p,1 = 1., p,
) Ji) < Kt — ), | i)l < KTl — )] 6 = L., p,
then

)
=F —Sﬁ(l;n# < “ = (2m11t J:' - = gy
uniformly with respect to F's and F, provided o,  0; where
k= J:J: f[lJ:(F'(x,)) dF(x) )
and
ot = Var hf[ JFds)

+ 5[ i)~ Fed Sk T e Pt o

where g, (u) = | if x, < u and is xero otherwise.
Proof. ‘The proof is along the same lines a8 in Bhuchongkul [3]). S¥(J.)
can be written a8

320 = # [ [ JlFule) 43
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Now
[1 JoFuted) = [1 Jute) — [T JFute) + [] JFule
a0d using Taylor's expansion, we can express [17., JAFiu(x)) &
[ JEue
= TTHF + 5 (Fulsd = P i) TLFe
+ Y (Fule) = Fle0 0o + (1~ O T] J40F,s+ (1 = OF)
+ T (Pl = Es0NEuls) = FAs) J1OFw + (1 = OF)
X J{OF+1 = 0F) ] TP +(1 = 0F,)
Define

A

[ ) LT
A = [ Fulsd = Fle) S0 TLHERN dFe@) =

B = [ (Futed = Fitsi) JiCF ) [T A o) dFde) = Fls).
i=1p
Cu= [ CFuted = Fiey

X JiOFu + (1 = OF) [T H0Fi + (1 = OF)FIS) i = s

Dua = [ [ (s = FisiPias) — Fis) Ji16Fia + 1 — OOF)
X JiOF+(1 —0F) TT Je0Fes + (1 ~ OFFL0)
" i< = lenhs
B = fof T I~ T} eputs| arte

TyaX -+ Xlpy

Cr= Jof TLJdrden de )

B hxe ol
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and

=[] [[LatFts + 5 Futed ~ P

} 8 AR
X JiWFi+ (1= OF) L JOF,. + (1 = a)r.)] dF (x).

We will show that ¥/, 4,, with a suitable normalization has a limiting normal
distribution and that the rest of the terms are all 0,(n!/*). The arguments are
exactly similar to those of Bhuchongkul [3] and we therefore omit the details.
‘The asymptotic negligibility

(i) of C,*and B,* follows immediately from assumptions (1), (2), and (3)
of Theorem 1;

(ii) of D,* follows from that of B,, in Bhuchongkul (3];

(iii) of Cy,'s and D,,’s follows from those of By, , B,,, and By, in
Bhuchongkul [3];

(iv) of B,,'s follows from those of B,, and By, of Bhuchongkul [3].

Finally, it can be shown easily a3 in Bhuchongkul [3) that ¥/ A, is the
average of n i.i.d. variables with mean p given in (*), variance o, given in (**),
and finite third moment. Hence the theorem, QED.

Remarks. (3) The first inequality of assumption (4) is more restrictive than
the corresponding one imposed by Bhuchongkul [3] or Chernoff and Savage [5).
However, conndenng J=F1(4)is satnﬁed by several distribution functions F
such a8 normal, exponential, logistic, and uniform. In all these cases, if J,.(//)
is the expectation of the ith-order statistic of samples of size # from a population
with c.d.f. J;! = F,, assumptions (1), (2), and (3) are also satisfied. This can be
easily checked using the results of Theorem 2 of Chernoff and Savage [5] as in
Theorem 2 of Bhuchongkul (3].

(b) A referce noted that Ruymgaart et al. (10] were able to eliminate the
condition involving the second derivative in assumption (4) in the two-
dimensional case. Tt seems likely that their techniques would permit us to
eliminate this condition also, but we have not verified this,

(c) Under the hypothesis H, of independ,

w=T1[ Hods
and

= Van [ epi)| - 3 TLERGHFK) Vern( LR
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In particular, taking the J's as identity, Spearman’s version of S*(J,) has
under H, mean 2-7 and variance o,% = [3-* — 4-%( p + 3)/3] while taking
] = -1, the normal scores version of the statistic S¢\(J,,) has under H, mean 0
and variance 0,8 = |,

3. ErrFiciency
In this section we will consider several types of dependence and compare the
ability of Sy, to detect the dependence with appropriate competitors. Most of

our computations will be done using Spearman's version of S%(],), in which
case we will denote the statistic by S, i.e.,

$Y =t foo [ ] i) dF(0)
i=1

= ptn z l’I R,,

For nonparametric itors we will ider the Puri-Sen-Gokhale [8]

P

statistics which have the form
VAR = =) § ThTT @)
where
Toi = [ TP+ 1) S + ) dFos )

F,,. denotes the two-dimensional empirical distribution function over the ith
and jth variates and J,'s are score functions. For the score functions considered
by Puri et al. [8], V3,,,/mt/* converges in probability to 37, [*5 [Z JAF/(x)
JAF{%,))dF (x,, x,) where F,, denotes the two-di jonal distribution
function of (X, X,) and the J's satisfy J, = lim, ]\ If the X/'s are pairwise
independent V7 ) is asymptotically x*( p(p — 1)/2). A parametric competitor
will be a statistic defined in Anderson [1]

L)
Uy = (AT, 62
whcrcA—-((a,,))—Z‘_,(x‘ )‘z)(x, X) X =Y., X,/n. Under assump-
tions which are satisfied in the d below, pairwise independence

of the X,'s implies —n log UM is nympmncnlly (pp—DP2).
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For our first example, we will let X have the density

fx) = @ey " oxp

-3 st + ([ wette - 1)

for —0 <%,.,%, <o (33

With this density, we have exchangesble random varisbles which have N(0, 1)
marginals, l-variate N(0, 1),,) distributions for / < p, and yet the variates are
mutually dependent. Due to the pairwise independence of the variates, the
Puri-Sen-Gokhale statistics and U!” would not form consistent tests for the
hypothesis of independence against this alternative, however, | S — 2-7 |/n'A
converges in probability to [4-)(2¢/3n)!/1)#, hence would form & consistent test
which means it would be “infinitely” more efficient than UL or any V7, .

Of course, similar examples can be constructed with nonnormal marginals,

(X3
flx) = (1 + i]l.\',) /zr, <y iy <], (3.4)

in which case | St — 2-* |/n'/ converges in probability to 6=* while the Puri-
Sen-Gokhale statistics and U™ would again fail to form consistent tests. The
significant fact in these examples is that S does admit the possibility of
detecting mutual dependence, despite pairwise independence, while the Puri-
Sen-Gokhale statistics and UL" do not.

The next natural question is how does S' compare to V{,,, and U when
there is pairwise dependence. In order to address this question, we have chosen
the following model.

Let U, ..., U, be independent random variables with densities (distribution
functions) f, ,..., f, (Fy ..., F,), respectively. Assume f/, f7, and {7 are bounded
and continuous for each { and that each f; is strictly positive on (—c0, ). Let W
be a random variable, independent of the U,’s, with finite second moment.
Define X, ,... X, by X; = U, + W, i = |,..., p, where the ks are real
constants and 0 < 8 < 0. This alternative is an extension of a model in
Bhuchongkul [3). We will compute the limiting (as « — 0) Pitman efficiencies
of S relative to V,,, and U'* for altcrnatives taken from this model.

The usual tools for computing the Pitman efficiencies (Fraser (6] and Puri
and Sen [9]) will not work in this case because the asymptotic distribution of
S$1# does not have the same form 18 that of V7, or U. However, it is possible
to compute the limiting (s a — 0) Pitman efficiency using the approximate
Bahadur efficiency. The method is 1o compute the approxi Bahadur slopes
of two statistics and verify that the two statistics satisfy an additional condition,
[11* (Wieand [12]). If so, the limit (as the alternative approaches the hypothesis)
of the approximate Bahadur efficiency of the two statistics represents the limit
(39 « — 0) of their exact Pitman efficiency.
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To begin, consider the statistic | SP* | = | S — 2-7| which is equivalent
® | S|, Under the hypothesis SI™* is asymptotically N(0, 0,%), where
o = 372 — 4% p + 3)[3, and under the alternative | S |/n'/ converges
i probability to | [Z, « [T, [T, F{x) dF(x, ,..., x,) — 2-*|. For the alter-
mtives given above, it follows that in Bahadur's notation (Bahadur [2)) we have

a=o;!

(3.5
and

i = | [ [ TTFd bl om0, G0

where F,, is the distribution function of X, and Fi(x, ,..., x,) is the distribution
of X under the alternative. Using Taylor expansions, we find

b0 = vz 5. ([ 100 ) ] e )+ 9, 02

where f; represents the density of U, . Finally, the approximate Bahadur slope is

cdt = et § hh ([ )| e )+ . 08)

To verify that | S | satisfies condition I11*, it must be shown that there is a
# > 0 such that for every « > 0 and 8€(0, 1), there is an " such that
8> n'(b(0) and B e (0, &) implics Po{; | S* |2 — KB) < B(B)} > | — 8.
It follows from (3.7) that we may choose a & such that 8 (0, &) implies 46) < 1.
From the proof of asymptotic normality of S1”(],) given in Section 2, we have

1182 |In'72 — B6)|

S don =277 — BN + L [4iml + ¥ | Bl + 1R,
= o=l

-
B

A= o] IRy dFi0 | + $ 1401 + 5181 1R
> Jew it =

<[ o= [ T Atsd R0 | + 5 1 4
- - jul =1
+Y 0Bl +Y T suplFuale) = Fifs 09
=1 I=2 1M <<l Kp Tiy

and this last expression can be written as | Aga — [5, -+ [7, [T/, Fadx) dF ()]
and a finite number of terms each of which is less than or equal to sup, | F,(x) ~
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F{x)| for some i. It is shown in Wieand [12] that for each { and any ¢’ > 0 and
5e(0,1) there is an m,* such that n > n,*/b%6) and 8€(0, &) imply
P(oup, | Fiu(x)) — F{x.)i < ¢§6)) > 1 — 3. It follows that with the proper
choice of ' and & and », = max, x,, 8 > n,/5%(0) and § € (0, #) would imply

P(£ 141+ £ 1801+ 1R < (nb0) > 1 =82 (a0)
Finally, the Berry~Esseen bound assures us that
| P(u‘ ’(A,, - -[.‘1-[.: ‘[_!!F,,(x‘)dl",(x, . x,)) o < z) —¥s) l

< ket (3.0

for all 3, where o2 =[5, - [7 [10., F& dF s, .y ¥,). We can choose M
such that &(3' %/2) > 1 — 8/8 and my > M such that An;''* < 8/8. Then
n > nyby8) and 8 € (0, &) implies

ox

P(n" A—J'J ] Fai(ts) dF sy v 5,) a}'<n”'b(9)«-’2).‘-l—82

which implies

!
/

|

P < > 1-82 (12

Ao — f‘ J" ﬁ Fulx) dFx, ..., x,)
® e el

since 0,8 < |. Letting #’ = max(n, , m,), it follows from (3.9), (3.10), and (3.11)
that n > n'/b%0) and O€ (0, &) implies P{i(j S'* I/n'/* — KB)) < <B(B)) >
1 — 8, hence condition 111*. Similarly, the Puri-Sen-Gokhale statistic with the
score function

J2itn + 1)) = 2w — DI — (2 + 1)12) (313

(the Spearman score function) satisfies condition I11* with

olt) = 1440t sart) 3 kkp ([ e a ([ S ) = o) 14)
f<y=1

The proof of this fact is similar to that given above and is omitted.

Letting Egtn-n,y represent the limiting (a3 o — 0) Pitman efficiency,
we have, by the theorem given in Wieand [12] Estoys(yy = limgfes(8)ci{8)),
i.e., by (3.8) and (3.14) "t

U (B b e ) e
Eet = Voo T gt R e s [ ey O
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It is immediately obvious that if we admit negative k,'s, which would represent
rome negative correlation, Egtips(,) can be 0, i.e., S{” can be “infinitely” less
efficient than V2 p).

Jt is sgain possible to consider the case of exchangeable random variables
with normal marginals with the above model by letting the U's and W be
N(0, 1) and letting each k; = p='/%. For competitors of S, we will use two
Puri-Sen-Gokhale statistics, one with score function Ji! given by (3.13) and the
other with score function J™(if(n + 1)) = E(2%" (the normal score function)
where 24" is the ith order statistic (out of n) from a N(0, 1) population. We will
also use UL and the likelihood ratio statistic for this alternative,

LY = (pfn) I):I Ry — (2, (3.16)

where & = Zr,lx,,/p, f=l,n
Our reason for including gty is that L” is essentially the “optimal”
statistic for this alternative.

Remark. We know the limiting Pitman efficiency Esonnyy for alternatives
of this type from (3.15). The Pitman efficiency of V41( p) fo Px( p) and F/x(p) to
UM are given by Puri and Sen [9] (and since these Pitman efficiencies are
independent of «, these are the limiting (as a — 0) Pitman efficiencies as well).
Noting that, in general, Eg » = Egy E, y , this permits us to compute
E_\-bnw,(,) and Egorytor . Fmally, L» satisfics eondmon I11* with ¢,(8) = 0)2
which can be shown usmg a technique similar to that given for SI*.

In Table [, we give the efficiencies of S'™ to the alternatives mentioned above
for p = 2(1)10. The efficiency is given for general p as well.

TABLE [
Limiting Pitman Efficiencies for Normal Alternatives

» Esowl'iy Est) g0 Esopl
2 1 09119 0.4559
3 0.9 0.8207 0.5471
4 0.8059 0.7349 0.5511
5 0.7181 0.6548 0.5238
6 0.63635 0.5804 0.4837
17 0.5611 05117 0.4386
8 0.4921 0.4487 0.3926
9 0.4292 0.3914 03471
10 0.3725 0.3397 0.3057
Hp—1 Hp—-1) (p— 17

180,14 2n'a,'4® pL R
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For this particular example, Egtopsrps = Egtarysor 60 caly Bgtoytor in included
in the table,

It is possible to compute the cfficiency of S22 to S'(],) for any of the score
functions given in Section 2 using the standard Pitman technique. However,
for the alternatives considered above, Etigbryy = oo forp > 2if [ f(w)du = 0.
We belicve that the only significance of this fact is that our alternative model
is inappropriate for such score functions. Of course, other types of dependence
arising from differcnt models could be considered. However, any model designed
for computing efficiencies easily is probably somewhat unrealistic so we did
not attempt this comparison. We believe the results already obtained are
sufficient to justify the following conclusions. If the hypothesis of independ
s to be tested against pairwise dependence, the Puri-Sen—Gokhale tests andfor
the normal theory tests are better than our proposed tests. However, if the
slternative is such that there may be mutual dependence without pairwise
dependence, one of our tests should be used (possibly in canjunction with
V. p) or Ui?), since, to the best of our knowledge, the proposed tests are the
only ones available with known asymptotic distribution which can possibly
detect such an alternative,
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