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This paper develops a nonlinear input-output model in which the production
flunctions can exhibit a mixture of returns lo scale at the various stages of
production. It is shown that the traditional propertics of the linear inp p
model can be replicated under an plausible ion, which we call the
uniform dominant disgonal condition. On the basis of this assumption it is shown
that the model satisfies a contraction property. This open up the possibility of using
some quite powerful results from the contraction mepping theory, establishes the
existence of solutions, efficient computational procedures, and leads to a rather
transparent mathematical theory for the nonlinear input—output model. Journal of
Economic Literature Classification Numbers: 022, 023.

The Leontief input—output model is most well-known and most often used
static model of the structure of a national y. The basic ption of
the model, viz., the constancy of the coefficients characterizing the tran-
saction matrix, however, rules out nonconstant returns to scale and
substitutability of inputs in each sector of the economy. Interesting cases
which arise when there are nonconstant returns to scale or when there are
substitution possibilities are not amenable to the Leontief input-output
analysis,

In reality, a sector may consist of a large number of minor production
units of different efficiency with regard to the use of inputs. Expanding the
output of such a sector may involve, e.g., the use of less efTicient units which
may not be used at lower levels of production. The production function for
the sector as a whole may then exhibit nonconstant returns to scale even
when there are constant returns to scale in each micro-unit. In addition to
this, of course, there may be increasing or decreasing returns to scale,
associated with higher levels of production, in the micro-units themselves.
The total variations in the returns to scale in a sector may be then a

* This paper is & revision of Discussion Paper 7936, indian Stalistical Ingtitute, September
1979. [ am indebted to S. Bose, V. K. Cheity, D. Dasgupta, Graham Pyaut, {. W. Seandberg
and an anonymous referee of this Journal for their helpful comments. Any remaining ervors
arec my own.
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combination of these two. Though the analysis presented below is general
enough to include both these possibilities, for the sake of simpler economic
interpretations (but whithout any loss of mathematical generality) we shall
assume nonconstant returns to scaie in the sectors, but rule out nonconstant
returns to scale in the micro-units.

In addition to the nonconstant returns to scale, the micro-units in a sector
may generate substitution possibilities with regard to the inputs for the sector
as a whole. Since the micro-units may be particularly efficient with regard to
the use of some inputs and not so with regard to others, the same rotal
amount of output may be produced with different total input combinations
depending upon the way in which the micro-units are utilized. In this paper,
we shall not focus on this aspect, but assume that the micro-units can be
ranked in some definite order of efficiency which may depend upon such
factors as the relative prices of inputs (and outputs) determined
exogeneously.

Motivated by the considerations such as outlined above, this paper
develops a nonlinear input—output model in which the production functions
can exhibit a mixture of returns to scale at the various stages of production.
It is shown that the traditional properties, including the wellknown
computational procedure, of the linear input—output model hold under an
extremely plausibl ption. This ption requires that each micro-
unit should have a positive value added at some exogeneously determined
relative prices of inputs.

We approach the problem on the basis of certain properties of matrix
norms and show that our model has the contraction property. This opens up
the possibility of using some quite powerful results from the contraction
mapping theory and leads to a rather transparent mathematical theory for
the nonlinear input—output mode!: establishes the exi of solutions, gives
simple and efficient computational procedures. In addition to this. it enables
us to compare and unify the various other models that have been proposed in
the literature. Since our assumptions are technically weaker than those of
Sandberg [11], and Chein and Chan [4], our main theorem (Theorem 1)
implies that each of these models, like our own, has the contraction
property.' This basic property shows that the models of these authors are
quite similar and forms the basis of a general theory for the nonlinear
input—output model.

The contents of this paper are as fotlows. In Section I we state our model
and its assumptions. In Section Il we establish the analytic properties of the
model. We show that our model satisfies the contraction property
(Theorem 1), and then prove certain results (Theorem 2 and 3) concerning

This shows thet 8 claim by Lahiri |7, footnote 9| that his viability conditions are quite
different and diflicult to compare with those of Sandberg [11] is not correct.
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the exi i and putation of the solution by exploiting this
property. In Section IIl, we show that the assumptions of our model are
weaker than those of Sandberg {11], and Chien and Chang [4]. Theorem 1
then implies that each of these models like our own satisfies the contraction

property.

I. THE MopeL

We assume the economy to be divided into n industrial sectors, each of
which produces a single kind of good that is traded. consumed, and invested
in the economy. The interrelations among the various sectors in such an
economy may be described by the system of equations:

x = Z aylx)=¢, (i=12.,n) m

J=

where x; denotes the quantity of good i produced in the ith sector and a,(x,)
represents the fofal amount of good i used as input for producing x; units of
good j. Therefore, for each i the total amount of good i available for final
consumption, export and investment is x,— X, @,(x), which is the left-
hand side of (1). The vector (c,, ¢;,.... C,,) is called the final demand vecior.
As a matter of convenience (1) may be written in the compact form as

x—A(x)=c, 0]

where x = (X, X;,..., x,) and |A(x)],= L], a,{x)) is the ith component of
Alx).

AssumpTiON 1. For each i and j, a,(-) is defined and continuously
differentiable on (0, ), 2,(0)=0 and aj{a)> 0 for all a >0, where aj{a)
denotes the derivative of ay(a) at a.

The coefficients aj(a), /= 1,2,..,n, will be referred to as the marginal
input coefficients for sector j. Given that each micro-unit has constant
returns 10 scale these must be in fact the constant average input coefficients
of some micro-unit in sector j. This assumption thus has the same meaning
as the nonnegativity assumption for the input coefficients in the linear case.
The remaining part of the assumption that the a,(a) are continuously
differentiable on |0, co0) is used in this paper to enable us to use certain tools
of differential celculus. It will be clear from below that this part of the
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is quite y as far as Th 1. 2, part of 3, and 4 of
our paper are concerned. Similar results can be obtained even when the
functions a,(a), i, j= 1,2,.., n, are piecewise affine

ASSUMPTION I1.  There exist p, >0, and v, > 0, i= 1, 2...,n, such that
P2 Xl piay{a)+ v for a€ 0, @) and j=1,2....n.

This ption is made ingful by interpreting p, as the price of
commodity I The sum }7., p,aj{a) then represents the marginal raw
materials and intermediate goods cost. The assumption thus means that there
is a positive value added in each micro-unit for some vector of prices.? This
is the same kind of assumption as is usually made for the linear case, with
the constant average and marginal input coefficients in the linear model now
being replaced by variable marginal input coefTicients. In facl Assumpuon I
is a sort of extension of the well-known d
(cf. [8]).

This completes the statement of our model and its assumptions. We show
later in Section Il that our assumptions are weaker than those of
Sandberg |11}, and Chein and Chan [4].

1I. PROPERTIES OF THE MODEL

As mentioned earlier, most of the properties of the linear input—output
model can be replicated in the nonlinear model. These properlies will be
summarized in the following theorems.

2.1, Notation and Definitions

The following notation and definitions are used throughoul the paper. R"
denotes the set of all real n-vectors. For y € R”, the inequality ¥y >0 (» > 0)
means that y, > 0 (y, > 0), for all i, where y, denotes the ith component of y.
The set R", denotes {y € Ry >0). / denotes the identity matrix of order
n. 10 M = (m,) is a real square matrix, then M >0 (M > 0) is equivalent to
the statement that m, > 0 (m,, > 0) for all i and j. If A(x) is a mapping from
R™ into R™ then M(x)= (m,(x)) denotes the Jacobian matrix of A(x) with
respect to x at the point x € R™. Accordingly, M(0) denotes the Jacobian
matrix of A(x) with respect to x at the point x=0.

DEFINITION 1. A mapping A(-) of R™ into R” is said to be contractive
over a set D c R" if there exists an a < | and a vector norm || - || on R” such
that ||A(x) — A(p) < a|lx— p|f for all x, yE€ D.

* Since the micro-units without positive value added may not participate in the production
process, the assumption may be even more reasonable than is being claimed.
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DEFINMON 2. Given a vector norm || - || on R" the norm of an arbitrary
n X n matrix with respect to || - || is

ll4]l= sup |l 4x]. 3)
ixl=1
2.2, Existence and Properties of the Solution

PROPOSITION |. Let | - || be an arbitrary vector norm on R" and P an
arbitrary nonsingular n X n matrix. Then the mapping | -|* defined by
lix|I* =|IPx|l, for all x € R", is a vector norm on R". Moreover, if A is an
arbitrary n X n (real) matrix, then

[Al* =[|PAP="|l. )

Proof. To show that | -||* is a vector norm requires only a simple
calculation verifying the axioms of a vector norm.” Then (4) results from

I4lI* = sup [l4x|*= sup [|PAx]
[T T} wat=1

= sup ||PAP™'y| =||PAP"|.
Iri=1

THEOREM 1.  Under Assumptions 1 and 11, the mapping A(-) of R” into
R™ as defined in (2) is contractive over R',.

We prove this theorem by means of 2 Lemma.*

LeMMA 1. Let A be an arbitrary nonnegative n X n matrix. If there exist
(row) vectors p>0 and v >0 such that p> pA +v, then there exisis a
vector norm || - ||* on R" and an € > 0 such that |A|* < | —¢.

Progf. Clearly, p> 0. Let P denote the (nonsingular) diagonal matrix
corresponding to the vector p. Let || - [|* be the norm defined as ||.x||* = || Px|
for all x € R", where | - ]| is the /,-norm on R", ic., [lx]| = X7, [x;. Then
(by Proposition 1) ||4||* =[|[PAP~"|| £ | — & where £ =min, ., (/7))

Proof of Theorem 1. Let x,yER". Then x +y(y —x)ER" for all
Y€E |0, 1). Let M(x + y(y — x)) denote the (nonnegative) Jacobian matrix of
A(-) at x + y(y — x). By Assumption I, there exist p > 0 and v > 0 such that-

P2 pM(x +y(y —x)) + v. Let P be the diagonal matrix corresponding to p

? Note that the norm || - {* depends upon the matrix P, although this is not indicated by our
notation.

* This lemma is, in fact, a restatement of the well-known result in the theory of productive
nonnegative input-output matrices that units can be so changed \hat column sums are less
than one, but is given here to familiarise the reader with the matrix-norm notation.
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and let || - |* be the norm as defined in Lemma 1. By Lemma | then there
exists >0 such that |M(x+y(y—x}1* <1 —¢. Since y is arbitrary,
SuPg ¢yt IMLx + ¥y — X)) * €1 —e. Since the mapping A(-): R" —~ R can
be extended to a convex open set containing R" (see the prool of Theorem 3
below), it follows from |10, Theorem 3.2.2] that

l4(x) — A(N* < Sue, IM(x+ y(y = W*llx— ylI* forallx,yERT.

Hence the theorem.

THEOREM 2. Under Assumptions | and 11, there exists a unique x € R,
such that x— A(x)=c., for each c€R". and for any x(0)ER" the
sequence |x(1)}y, defined by the Jacobi iterates

x(t+ )=A(x(1)) +¢ 120, (5)

converges 10 X.

Proof. Let ¢ be an arbitrary (column) vector belonging to R” and let
F.(-): R}, = R denote the mapping defined as F.(x)=A(x)+c. for all
Xx€ER". Then F,) is contractive over R%. This is so because
Fx)—F(y)=A(x)—A(y) for all x,yER7, and tha. as proved in
Theorem | above, the mapping A(-) is contractive over R", .

From Assumption 1 above, a,,(0) = 0 and aj(a) > 0 for all ¢ € |0. ) and
each i, j= 1, 2. Thus, A(x)>0 for all x>0 and hence the mapping
F () defined as F_(x)=A(x)+c. for all x€ R’ is from R" into R . i.e.,
F(x)>0forall x>0.

Proof of our theorem is a direct consequence of the well-known
contraction mapping principle (see, e.g., |10, p. 120]) which states

“Suppose that F(-): R* —» R” is conlractive over a closed set Dc R and that
F|D| € D. Then F(-) has a unique fixed point in D and for any X{0)€ D the
sequence |x(1)}° defined by the Jacobi iterates x(f + 1) = F(x(1)) 7 > 0. converges
to the fixed poim™.

In our case D = R",. Thus, if x is a fixed point of F(-). then x € R", and
X = F(x), Le, x = A(x) + ¢. Also x(1 + 1) = F(x(1)) = A(x(1)) + ¢ converges
o x.

COROLLARY 1. For x(0) = c the sequence {x(1)\7", defined by the Jacobi
iterates x(1 + 1) =A(x(t)) + c satisfles x(t + 1) > x(1) 2 ¢.

Proof. Assumption I implies that A(x) > A(y)> 0 whenever x> y > 0.
Hence the corollary.
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COROLLARY 2. [fx=A(x)+c and y=A(y)+d, in which x, y,c and d
belong to R, such that ¢ 3 d, then x> y.

Proof. Let |x(1))3° and |y(1)|® be the sequences defined by the Jacobi
iterates x(1 4+ 1) = A(x(1)) + ¢, x(0) = ¢, and y(t + 1) = A(y(1)) + d.
(0)=d, respectively. Then x(t) > y(t) for all 13 0. Theorem 2 implies that
x 2 . Hence the corollary.

As a consequence of the contraction property the computational procedure
as suggested in Theorem 2 has a fast convergence.® It also has computational
simplicity. All that is necessary by way of the computational facility is the
ability to evaluate A(x) for a given value of x. The nature of convergence
follows from the following inequalities which follow from the contraction
property.

a
1 -

llx(0) = xII* < a' | x(0) — x|1*,
e —ell* <a'(1 —a) | x(0) — x|*.

It is clear that the rate of convergence of the Jacobi iterates depends upon
the contraction constant a. The first of these inequalities provides 2
computable error estimate, i.c., if the contraction constant a is known, the
actual error || x(r) — x||* (measured in terms of the norm || - ||*) after the th
iteration can be bounded in terms of the last step [lx(¢) —x(r — 1)]|*. The
second inequality provides an estimate of the number of iterations required
for a given tolerable margin of error. For example, if the initial error is 50%
and the contraction constant a = 9/10, the number of iterations required for
a 5% tolerable margin of error is then approximately 25. The last inequality
implies that the target errors diminish at a geometric rate.

Let B(-) denote the mapping defined as B(x)=x — A(x) for all x€ R",.
Then B(-) is from R” into R". It was shown in Theorem 2 that for each
¢€E R’ there exists a unique x € R, such that B(x)=c. We now prove a
“smoothness” property of the inverse mapping B~ ':R% - R,

Ix() - x)* <

—llx() = x(t= DI,

THEOREM 3. Under Assumptions 1 and 11, there exists a constant n X n
matrix K and a continuous mapping A(-) of R into R" such that
lldeX/lcll = O as |lc]|-» O with the property that B~'(c)= Kc + 4(c) for
each cE R,

This procedure originated in antiquity, appearing, c.g., in the writings of Heron of Alex-
andria 2| in the second century B.C. in connection with the extraction of roots. An abstract
formalization of Lhis procedure as & property of the contraction mapping was achicved by
Banach | 1| and further elaborated by Weissinger [12].
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Proof. Let S=|x€R":x,> —n for all i|, where n > 0 is an arbitrary
constant. Let G(-) denote the extension of the mapping A(-) to the domain §,
with G(-) defined by the condition that |G(x)|,=X]., gy(x,) for cach
i=1,2..n and all xE S, where g (a)=a,la) for all i, j=1,2...n and
a>0, gy(+) is continuous at a =0, and g;(a)=a;(0) for ali a € (1. 0).
Then G(-) is continuously differentiable over the open set S and for x > 0,
the Jacobi matrix of G{x) is same as that of A(x). By essentially the same
argument as in Theorem I, the extended mapping G(-) from § into R” is
contractive over S.

Let F(-) from S into R" be the mapping defined as F(x) = x — G(x) for all
x€ES. Then (/—M(0)) is the Jacobi matrix of F(-) at x=0 and
det(? — M(0)}+# 0 (cf. [9]). By the inverse function theorem, S contains an
open neighbourhood X of 0 such that F(-) is a homeomorphism of X onto an
open neighborhood Y of O and there is a continuous mapping &(-) of R
onto R" such that ||5(y)/|l»]| =0 as ||y]|»0 and such that F(x)=y is
satisfied by

x=(I-MO0) 'y+&y). y€EX andx€X.

To complete the proof we must show that x>0, i.e. F(x)=B(x). for
every ¢ € YMR". Suppose that F(£)=c and <} 0 for some c€ YNR".
Since ¢ € YN R, there exists an X > 0 such that B(¥) = ¢, by Theorem 2.
Since F(x)=B(x) for all x>0, this implies that F(¥)— F(¥)=0. This
means £ — X = G(¥) — G(X) and G(-) contractive over S D X. However, this
can be true only if ¥=X>0, in contradiction to the definition of X. This
proves that F~'(c)=B"'(c) for all ¢ € YN R", and thus

B~'(c)=(I—M(0))'c+d(c) for eachcE YNRT.
Hence the theorem.

THEOREM 4. Under Assumptions | and 11, jf x—A(x)=c. and
y—A(y)=d. in which x, y, c and d are elements of R", such that ¢ > d and
c—d=#0, and if (I — M(y)) is indecomposable, where M(y) is the Jacobian
matrix, then x — y > 0.

Proof. Corollary 2 above implies that
B '(c)>B '(d+alc—d)>B~'(d) foralla€ (0, 1) (6)

As in Theorem 3 there is a continuous mapping 4(-) of R into R” such that
ll4@@)lI/lz]l - 0 as ||z[| + O, and

B7'(d+alc—d)=B""(d) + al ~M(y))"'(c ~ d) + A(alc - d)). (T)
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Since (I—M(y)) is ind posable. A ption II  implies that
(I—M(»))"'>0. Thus, there exists an @€E(0,1) such that
B~'(d +a(c — d)) > B~'(d). Inequalities (6) and (7) together imply that
B-'(c) > B~'(d). Hence the theorem.

Theorems 1-4 demonstrate that our model has similar properties as the
linear input—output model. It may be of further interest to observe that any
subsystem of (1) has the same properties as (1) itself and that a linear
input-output model has the contraction property {f and only {f it satisfies
Assumptions I and 11. These can be proved casily be utilizing the properties
of the contraction mapping.

Finally, note that we have not anywhere utilized the assumption that
[A(x)); = LJ., ay(x;) which rules out intersectoral externalities. All the
results above would hold even if we were to assume more generally that
JA(x)], = a,(x), a real-valued function of the vector x.*

111. NOTES ON THE LITERATURE

Theorem | above shows that our model satisfies the contraction property.
This enables us to use some quite powerful results from the contraction
mapping theory and leads to Theorems 2—4 in a straightforward manner. We
now show that some other nonlinear input-output models that have been
proposed in the literature [4, 11], also have this property.’

To prove that each of the models due to Sandberg |11]| and Chein and
Chan |4] has the contraction property, we show that their assumptions are
technically stronger than ours. Since both these models have an Assumption
same as our Assumption I, we need to show this only with regard to our
Assumption II. We shall require the following definition and result.

DEFINITION 3. An n X n (real) matrix M = (my) is sald to be a P-matrix
if all its principal minors are positive.

ProposiTiON 2. (Nikaido |9, Theorem 6.11]). An nXn matrix M is a
P-matrix {f, and only if, there exisis a (row) vector p € R", such that pM > 0.

We first state the assumptions of Sandberg |11]. In addition to continuous
differentiability,® the following assumptions are required.

¢ This generalization was suggested to me by the referee.

? Lahiri |7] directly assumes his model to have the contraction property, but considers his
assumptions to be quite different and dificult to compare with those of Sandberg |11].

* As in our case the ion of i iTerentiability is not essential for most of
Sandberg’s results, but is used merely as a matter of convenience.
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SANDBERG |11}, For each i and j, 0 < aj(a) < aj(0) for all a >0, and
(I — M(0)) is @ P-matrix, where m,(0) = a;}{0).

In Chein and Chan the functions a,(x;} i, j = . 2..... n, are assumed 10 be
piecewise affine and the assumptions are stated accordingly. These
assumptions can be stated in the context of differentiable functions as
follows.*

CHIEN AND CHAN |4|.  There exists a n X n matrix M such that for each
fandj. my>aj(a)>0 for all a >0, and (I — M) is a P-matrix.

Note that the assumptions of Chein and Chan as stated above are slightly
weaker than those of Sandberg. In that it is assumed in Sandberg (hat
M = M(0). In both cases. however, the ptions are purely technological
In our terminology it is assumed that some micro-units are more eficient
than all others in the utilization of every input. If the micro-unils which are
efficient in utilizing some inputs are not necessarily efTicient in utilizing
others, then these assumptions will not hold. That our assumptions are
weaker follows [rom the following proposition.

PROPOSITION 3. If there exisis a n X n matrix M such that for each i
and j. my; > aj(a) >0 for all a>0, and (I — M) is a P-matrix then there
exist p; 20 and v;>0. i=1,2....n. such that p;> Y_}., p,ala) +v, for
a€0. ) and j=1,2...n

Proof. Since (I — M) is a P-matrix, by Proposition 2 there exists a {(row)
vector p € R, such that p > pM. Clearly, we can find a vector v > 0 such
that p> pM + v, that is, p,; > 57, pymy; + v, for j = 1. 2....n. This implies
that p; > 3", p,aj{a) + v, for all a € [0, c0) and j= I, 2..... n. Hence the
proposition.

IV. ConcLUsION

We have presented above a nonlinear input—-output mode} and shown that
the traditional properties of the linear input-output model. including the
computational procedure, can be replicated. Theorems 14 are of particular
interest from this point of view. The attractiveness of these results adds
credence to the generalization of the linear model attempled by
Sandberg |11], Lahiri |7] and Chien and Chan [4]. This we expect will lead
to a wider acceptability and applications of the input—output analysis to
problems that have been traditionally considered as not amenable to this
type of analysis.

* Alternatively, we can state the assumplions of our model in the context of piccewise affine
functions and show that similar results hold.
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