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ABSTRACT

The definition of a proj under a semi is given. Such a projector is not
unique. Operators projecting into a given linear subspace under a seminorm form an
affine linear subalgebra of the linear associative algebra of square matrices. The
authors have introduced elsewhere the concept of a minimum seminorm semileast
squares inverse of a complex matrix. It is shown here that the same concept could
also be defined in terms of projectors under seminorms. This extends a similar
definition for the Moore Penrose inverse given in terms of orthogonal projectors
under the usual Euclidean norms. Various properties of a projector under a seminorm
and also of a minimum seminorm semileast squares inverse are obtained including
representations giving general solutions for both.

1. INTRODUCTION

The concept of projection under a seminorm was introduced in Rao and
Mitra [6,7]. In the present publication, we propose to study this operator in
greater detail while correcting some errors in earlier results.

The study of projection under a seminorm arose out of its importance in
the statistical problem of estimation of parameters in linear models when the
random variables have a singular covariance matrix. We hope it will find
applications in other areas too.

We denote by EP the vector space of all complex p-tuples. Let A be a
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complex matrix of order m X n and M a nonnegative definite matrix of order
mXm. Let 9 (A) denote the vector space spanned by the columns of A.

DEeFINITION A matrix P,y is called a projector into I (A) with respect
to the seminorm defined by | x|, =(x*Mx)!/%, x€ E™ if and only if the
following two conditions hold

P,yeIM(A) VyeE™ (L.1a)
ly=Paylly<lly—Axll,, VxEE" ycE™. (L1b)
We denote P,y simply by P, when the seminorm involved is und d

with reference to context. The class of such matrices which are projectors
into 9N (A) is denoted by {P,,} or simply by (P,).

In Rao and Mitra [6,7] is shown the existence of a matrix G, called
M-semileast squares inverse of A, such that =Gy is a M-semileast squares
solution of Ax=y, that is, one which minimizes (y— Ax)*M(y— Ax). Then
AZ=AGy and one choice of P, is AG. This establishes the connection
between projection operators and generalized inverses.

2. PROJECTION OPERATOR UNDER SEMINORMS

We blish the following and th concerning projection
operators under seminorms.

LeMMA 2.1.. The matrix P of order m X m is a projector onto N (P) iff
P*MP=MP. 1)

Proof. With (l.la) trivially satisfied, one need only consider (1.1b).
Observe that (I— P)*MP#0=>y*(I— P)*MPz#0 for some y,z€ &™=(y—
Py)*M(y—Py)>(y—Px)*M(y— Px) where x=y+cz and ¢=y*(I-P)
*MPz/z* P* MPz, which contradicts (1.1b). Thus the necessity of (2.1) is
established. To prove sufficiency, check that (2.1)=(y— Px)*M(y— Px)
=(y—Py)*M(y— Py)+(y—x)*P*MP(y— x) which shows that for each x
we have indeed the strict inequality in (1.1b) unless

MPx=MPy. (22)

As a simple consequence of Lemma 2.1, we have Lemma 2.2.
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Lemma 232, Condition (2.1) is equivalent to

(MP)*=MP, (2.3a)

MP®=MP. (2.3b)

TueoreM 2.1. P is a projector into O (A) iff

(i) Im(P)cOM(A), (2.4a)
() P*MP=MP (or MP=P*M), (2.4b)
(ii) MPA=MA. (2.4¢)

The proof of Theorem 2.1 is similar to that of Lemma 2.1.

Tueorem 2.2. The conditions of Theorem 2.1 are equivalent to the
following

i) (P)c IM(A), (2.50)
() P*MP=MP, (2.5b)
(iif) Rank(MP)=Rank(MA). (25¢)

Proof. (2.4a)=>P= AK for some matrix K. Then MP= MAK=>Rank(MP)
< Rank(MA). But (2.4c)=>Rank(MP)> Rank(MA). Thus Rank(MP)
=Rank(MA) so that (2.5 a,b,c) follow from (2.4 a,b,c). (2.5a) and (2.5¢c)
=MA = MPR for some matrix R. Using (2. 5b) MA = MPR=P*MPR=P*MA
=MPA which establishes the q

Note 1. (2.5b) and (2.5¢) or (2.4c)=>(1.1b). This, however, is no guaran-
tee that P would project into the right subspace for which we need (1.1a) or
equivalently (2.5a). When M is positive definite, (2.5c) and (2.4c) are
respectively equivalent to Rank(P)=Rank(A) and PA=A and these two
together imply 9 (P)= 9N (A) and hence (2.5a).

Note 2. If P is a projector into M (A) and M (P)C M (B)C M.(A),
then P is also a projector into 9 (B). Let C denote the collection of all such
linear subspaces of E™ with the property that if the subspace § is a member
of C then P is a projector into §.C is thus a partially ordered set with
respect to the set inclusi The minimal and maxi ) inC
are given by 91 (P) and 9 (P)+ 9 (M), respectively, where IL(M) is the
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nullspace of M. The linear transformation M maps each linear space in C
onto the same image space, which we denote by S (P). Observe that
§ (P)= 9N (MP) is a characteristic of the projector P.

TueoRem 2.3. For i=1,2 let P, be a projector into 9N (P,). Then

(a) P,+ P, is a projector if and only if MP,P,= MP,P,=0.
(b) P,— P, is a projector if and only if MP,P,= MP,P,= MP,.
(c) PP, is a projector if and only if MP,P,= MP,P,.

Proof.  Similar propositions for the usual projectors (orthogonal or obli-
que) are well known (see, for example, Chapter 5 of Rao and Mitra 7) and
Theorem 2.3 could be proved on the same lines. We shall however prove the
necessity parts of Theorem 2.3(a) and (c) to show the changes that may be
needed in the proof.

M(P,+P,)* = M(P,+P,),MP:=MP, and (MP,)*=MP,
=M(P,P,+P,P)=0
=MP,P¢+ MP,P,P,= Pt MP}+ MP,PP,
= Pt MP,+ MP,P\Py= MP,P, + MP,P,P,=0
=P} MP, P, + P} MP,P,P,= MP,P, P, + MPZP,P,
=2MP,P,P,=0.

Back substitution in the preceding steps show MP,P,=MP,P,=0, thus
establishing the necessity part of Theorem 2.3(a).

(MP)*=MP,  (MP,P;)*=MP,P,=
MP,P,= P} MP,= P{ PM= (P! P}M)*= MP,P,.
This establishes the necessity part of Theorem 2.3 (c).

When M is positive semi-definite, a projection into 9T (A) is not unique.
We have, however, the following result.

TueoreM 24. If P and P are two choices of a projector into M (A),
then so are

PP and AP+(1-A)P (2.6a)
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for any complex number A, and

MP?= MP%= MPP= MPP= MP=MP. (2.6b)

Proof. From (2.4a) and (2.4c) it follows that

MPP=MP*=MP. (2.7)
Using (2.4b) and (2.7) we have

(P- P)*M(P— P)=M(P-F)’=0.

Hence MP= MP and (2.6b) is established.
To_show that P=AP+(1—A)P is indeed a projector into 9N (A), check
that P trivially satisfies (2.4a) and (2.4c). Also

P*MP=MP®= M[XP®+\(1-A)PP+(1-NAPP+(1-A)P?]
=[A2+2A1-N)+(1-A)°]MP=MP

=M[\P+(1-))P]=MP.

Thus P satisfies (2.4b) as well as being thus a projector into O (A).

Theorem 2.4 shows that the class of projectors into 9T (A), under a
seminorm, is a affine sublinear space of the linear space of matrices of order
mXm. Further, it is also closed under multiplication. In this sense we have
the following result:

Tueorem 25. The projectors into 9L (A) under a seminorm span an
affine linear subalgebra of the linear associative algebra of m X m matrices.

The following two theorems lead to an explicit algebraic representation of
a projector under a seminorm by showing first how a projector with respect

to a seminorm is related to an orthogonal projector with respect to the usual
Euclidean norm.

Tueorem 2.8. Let M= C*DC where D is nonnegative definite. Then
@ {PeaxC) c{CPyan}s
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(b) {PoayC}={CPyan} if and only if either
M(C*) C (M) + N(AY), (289)
and/or
C*C is positive definite. (2.8b)

Proof. (a) is a simple consequence of the fact that
Il y = Axl] = |Cy — CAxl| .

For (b) the sufficiency of (2.8a) follows from Theorem 2.6(a) and Theorem
2.4 since, when I (C*)C M (M)+ N (A*), the uniqueness of MP,y, as
implied by (2.6b) implies that CP, ) be unique irrespective of the choice of
the projector P, To prove ti:e sufficiency of (2.8b) choose and fix
matrices P € (P, )} and Q € (Pgyp,) such that CP= QC. Existence of such
a pair P,Q follows from Theorem 2.6(a). Also let the matrix K be such that
O (K)=OM(A) N 9N (M). From (2.6b) and Theorem 2.1 it is seen that a
general solution to P, is given by P, =P+ KU, where U is such that
KU is a matrix of order mXm and is otherwise arbitrary. Observe that
Q+CKU(C*C)™'C* is indeed one choice of Pgyp) and

C(P+KU)=(Q+CKU(C*C)'Cc*)C.
To prove the “only if” part of Theorem 2.6(b), assume that both (2.8a)
and (2.8b) are untrue. Let P and Q be determined as in above. Let u be a

vector in E™ which is not in 9 (C*) and v be a vector in M (K) which is
not in 9L (C). It is easily seen that

P+ou* € (Pyn)

C(P+vu*) &{Pcyp)C).

Tueorem 2.7. (a) Let M=C*C. Then
CPysn=PcanC. (2.9a)
(b) A general solution to Py, is
Paon=A(A*MA) A*M+A[I-(A*MA) AMA]U,  (29b)
where U is arbitrary and (A*MA)~ called a generalized inverse (or o
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g-inverse) of A*MA represents a matrix such that
A*MA(A*MA) A*MA=A*MA.
Proof. (2.9a) follows from Theorem 2.6(b). The uniqueness of CP,,

under (2.8a) was noted in the proof of this Theorem. Using the explicit
ion of the orthogonal proj given for ple in Rao and

PrY)

Mitra [7, p. 111] we have
PeanC=CA(A*C*CA) A*C*C=CA(A*MA) A*M.

A(A*MA)"A*M is thus seen to be one choice of P, ). (2.9b) follows from
the fact that

IM[A{I-(A*MA)”A*MA}]=TN(A)N (M)

[Mitra and Rao [3]].

3. MINIMUM SEMINORM SEMILEAST SQUARES INVERSE

Let the seminorms of x€ E" and y € E™ be defined by

1/2 1/2

llyllae=(y*My)",

where M and N are nonnegative definite matrices. As in Rao and Mitra (6,7),
we define the following:

llxlly = (x*Nx)

(a) Gisa g-inverse of A if x= Gy is a solution of the consistent equation
Ax=y,Yy€ M (A). We represeht such an inverse by A~, the entire class
by (A7), and the subclass satisfying (A~)~=A by (4,").

(b) G is a mini N-seminorm, M-semil squares inverse of A if
and only if x= Gy has minimum N-seminorm among the semileast squares
solutions of Ax=y which is possibly inconsistent. We denote the class of
such matrices by {A,n}. The subclass {A,}} consists of such inverses Ay
which are also in (A7)

It may be noted that A, is the Moore-Penrose inverse when M and N
are positive definite and is unique. The unique A, € {A,” } and is therefore
of the type A{y. In general, when M and N are not positive definite, A,y is
not unique and need not be a g-inverse in the sense defined in Rao and
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Mitra (6). We investigate the properties of A, and the conditions under
which A, is unique, Ayy exists, and related problems.
Tueorem 3.1.  For G to be A,y it is necessary and sufficient that
(a) MAGA=MA, (AG)*M=MAG (3.12)
(b) IN(NG)cC M(A*MA). (3.1b)

Proof. For = Gy to satisfy the requirement ||Ax— y||,, > [[AZ—y||,, it
is necessary and sufficient that % is a solution of the equation

A*MAx=A*My (3.2a)
©A*MAG=A*M (3.2b)
<(3.1a).

A general solution to (3.2a) is given by

x=%+[I-(A*MA) A*MAJz, (33)

where z€ E" is arbitrary. For % to have minimum N seminorm in this class,
it is necessary and sufficient that

(%)*N[I-(A*MA) A*MA]z=0 Vy€E™ z€E" (34)
«(3.1b).

Tueorem 3.2. For G to be Ayy it is necessary that
(a) MAGA=MA, (AG)*M=MAG, (353)
(b') NGAG=NG, (GA)*N=NGA. (3.5b)
The conditions (a) and (b') are respectively equivalent to
AGE(P,} and GAE(P:}, (3.5¢)
where P, is a projector under the M seminorm and P is a projector under
the N seminorm, as defined in Section 2 of this paper.

Proof. A*MAG=A*M=A*MA(I-GA)=0 VzeE". If =Cy, for
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arbitrary z€ E"
x=%+(I-GA)z (3.6)

is a solution to (3.2a), though not necessarily the general solution. For % to
have a minimum N seminorm in this class, it is necessary and sufficient that

(2)*N(I-GA)z=0 VyeE™ z€E" (3.7)
©G*N(I-GA)=0
«<condition (b’) of Theorem 3.2.

Using Theorems 3.1 and 3.2, we have the following result.

THEOREM 3.3. For G to be Ayy it is necessary and sufficient that

AGE(PR,), GAE(F), (3.8)
and

§ (GA) COM(A*MA), (3.8b)
where §( ) is the ch istic of a proj as introduced in Note 2

following Theorem 2.2.
Proof. Necessity of (3.8a) was proved in Theorem 3.2. When (3.8a) or
equivalently (3.5a) and (3.5b) holds, G satisfies the equation
NGAG=NG.

Hence § (GA)= M (NPg)= M (NGA)= M (NG).
Necessity of (3.8b) and its sufficiency in conjunction with (3.8a) therefore
follows from Theorem 3.1.

TheoreM 3.4. If Rank(A*MA)=Rank(A), then conditions (i) or (ii) is
necessary and sufficient for G to be Ayy.
(i) AGe(p,}), GAE(F;}. (3.9a)
(i) MAGA=MA,(AG)*M=MAG,NGAG= NG, and (GA)*N=NGA.
(3.9b)

Proof. The “necessity” part was established in Theorem 3.2. The proof
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of the “sufficiency” part consists in showing that when the matrices A*MA
and A are of the same rank, x as determined in (3.6) is indeed a general
solution to (3.2a), so that the conditions which are shown to be necessary in
the proof of Theorem 3.2 are also seen to be sufficient.

Let G be a matrix satisfying (3.2b). Observe that

Rank(A*MA)=RankA=IM(A*MA) =M (A*)=>CA=JA*MA
for some matrix J. Also

A*MAG=A*M=A*MAGA=A*MA=A*MAJA*MA=A*MA

=JE{(A*MA) )} >GA=(A*MA) A*MA

for a suitable choice of the generalized inverse (A*MA)~ This shows that
here (3.6) and (3.3) determine an identical class of solutions and the proof of
Theorem 3.4 is complete.

Tueorem 3.5. The following statements are true:

() NG,=NG, if G, and G, are two choices of Ayy.

(M) (Ayy)= {Aun,) if No=N+A*MA.

(iii) Gy=Ny A*MA(A*MANyA*MA)~A*M is one choice of Ayy.

(iv) G=Gy+(I— Ny No)U is a general solution to Ayy.

(V) Ay is unique if and only if N+ A*MA is positive definite.

(Vi) If GE(Ayy), then ON[N (I-(A*MA)-A*MA)]= I (N(I-
CA)).

Proof. By Theorem 3.1, NG,=A*MAK, for some K, (i=1,2). Hence
(G~ G3IN(C, - Cy)= (G — G3)A* MA (K, - K;)=(MA — MA)(K, - K,)
=0. Since N is gative definite, this implies (i).

To establish (i) choose and fix a particular solution x=u of Eq. (3.2a).
Then a general solution to (3.2a) is given by x=u+[I—(A*MA) A*MA]z
where zE E" is arbitrary. Observe that for every x so determined

- 2 2
el = R+ el enea = N2l + el 5epen-

Hence if ¥= Gy minimizes the N seminorm of x in this class the same choice
would also minimize its N, seminorm and vice versa. This establishes (ii). In
fact, the proof shows that the statement would remain true if No=N+
A*AA where A is a nonnegative definite matrix such that 9 (A*AA)
C M (A*MA), A could be arbitrary otherwise.
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To establish (iii), one has to verify that G, satisfies conditions (a) and (b)
of Theorem 3.1. (a) is straightforward. For (b), check that NNy A*MA
=N(N+A*MA)"A*MA=N=* A*MA, the parallel sum of the gati
definite matrices N and A*MA as defined by Anderson and Duffin (1). (b)
follows from the following property of the parallel sum established by these
authors (see also Section 10.1.6 in Rao and Mitra (7) in this connection):

M(NTA*MA) = IL(N) N TL(A*MA).

(iv) In view of (i) and (iii), conditions (a) and (b) of Theorem 3.1 could be
replaced by the following equivalent condition

e
N NG,
A general solution to this equation is given by

G=Go+7Z,

where Z is a general solution to the cor ding h

J % -] ()

equation

(A'MA )Z=0©(N+A'MA)Z=N°Z=0.
N

This establishes (iv).
(v) follows from (iv).
(vi) To prove (vi), observe that in view of (i)

N(I-GA)=N(I-G,A),

and that GoA=(A*MA)"A*MA for a particular choice Ny A*MA(A*-
MAN;A*MA)™ of (A*MA)~. Note that I[N (I—(A*MA)~A*MA)}] is
independent of the choice of (A*MA)~. This concludes the proof of
Theorem 3.5.

It is seen from Theorem 3.1 that A,y is not necessarily a g-inverse of A,
that is, the relation AA,yA=A may not be true for every member of
{Asn)- Theorem 3.6 gives the conditions under which the subclass {Afy) is
not empty.

Taeorem 38, {A*,y) is not empty if and only if
OM(N) N IM(A*) C TL(A*M). (3.10)
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Proof. We ider the g I solution A,y as given in (iv), Theorem
3.5 with

Go=Ny A*MA(A*MAN;A*MA) A*M,
as in (i), Theorem 3.5. If the solution is a g-inverse, then
A[Go+(I-NyNy)UlA=A
@A(I-GoA)=A(I- Ny Ny)UA. (3.11)

Observe that Rank[A(I—GyA)]=Rank[A*:A*MA]—Rank(A*MA) by
Lemma 7.1.2 of Rao and Mitra [7]. Also,

Rank[A (I— Ny N,)] =Rank[A*: No] — Rank(N,).
Since O (A*MA)C O (N,), we have
Rank[A (I— GoA)] > Rank[A (I- Ny N)]. (3.12)

This shows that eq. (3.11) in U is inconsistent unless strict equality holds in
(3.12). The equivalence of this condition with (3.10) follows from the
representation of the intersection of linear spaces given in Lemma 2 of Mitra
and Rao [3]. Also since (I— Ny No)=(I— GoA)K for some K, if (3.10) holds
and the inequality in (3.12) can be replaced by equality, then

MLA(I-Ng No)l= T[A(I- GoA)].
in which case given A~ there exists U, such that
A(I- Ny No)U=A(I- G,A)A~ (3.13)
Such a U clearly satisfies (3.11), thus blishing the i of (3.11)
and the sufficiency of (3.10).

Under the condition (3.10), we have established the existence of
G, E{Ayy) such that AG,A=A. Now we choose

G,=G,AG,. (3.14)

It is easy to see that G,E€{A,) and AG,A=A and G,AG,=G,, so that
G,E€(Ayy) as defined.

CoroLLary 3.6.1. If (3.10). holds, then the necessary conditions in
Theorem 3.2 are also sufficient.

Proof. If (3.10) holds, then by Theorem 3.6 there exists a G,E{A*).
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Using (vi), Theorem 3.5,

M N(I-(A*MA)” A*MA)) = O{N(I-G,A)}. (3.15)
For any G satisfying (3.5 a,b) or (3.5 ¢)

G*N(I- GyA)=G*NGA(I-G,A)=0
=G*N{I-(A*MA) A*MA}=0
=9I(NG)C M(A*MA).

By Theorem 3.1, G € (A, ).

In Rao and Mitra [6,7) it was wrongly stated that the conditions in
Lemma 3.2 are necessary and sufficient for G to be Ayy. This is however
true only with an additional condition as in Theorem 3.3. The authors are
indebted to Dr. M. Sibuya and Dr. K. Tanabe for a remark which led to the
detection of this error.

The authors also wish to thank the referee for his comments which led to
Theorem 2.6. Theorem 2.7 appears in a form which was essentially com-
municated to the authors by the referee. His comments in general were

helpful in improving the presentation of this paper.
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