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ABSTRACT

An estimate for the norm of the solution to the equation AX — XB =S obtained
by R. Bhatia, C. Davis, and A. Mclntosh for normal operators A and B is shown to be
valid for a larger class. Some other inequalities in the same spirit are obtained,
including a “sind theorem” for singular vectors. Some inequalities concerning the
continuity of the map A — | A| obtained recently by Kittaneh and Kosaki are extended
wing these ideas.

Let H, and H, be any two Hilbert spaces, and let L(H,, H;) denote the
space of bounded linear operators from H, to H,. Let L(H, H) be denoted
simply as L(H). For A € L(H) let o(A) denote the spectrum of A. It has
long been known (see [11]) that if A and B are elements of L(H,) and
L(H,), respectively, such that o(A) and o( B) are disjoint, then for every S in
L(H,, H,) the equation AX — XB=S$ has a unique solution X € L(H,, H,).
In their study of the subspace perturbation problem [4), R. Bhatia, C. Davis,
and A. Mclntosh obtained some estimates for the norm of X in terms of that
of S and the number 8 = dist(o( A), 6( B)). Among other things they proved:
If A and B are normal operators such that dist(6(A),0(B))=8>0and if S
is a Hilbert-Schmidt operator, then the solution X is also a Hilbert-Schmidt
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operator and

8lIXl, < ISllg- (1)

More gene~ally, if S belongs to a subspace & of L(H,, H,) which is the
domain of a symmetric norm |||, then X also belongs to & and

SIIXH < egiliSill, @

where c{ is a universal constant. If A, B are self-adjoint, then the constant ¢;
in (2) can be replaced by a (possibly smaller) constant c{. (See [4] for details.)

It was also pointed out in [4] that no estimate like (1) or (2) above is
possible, in general, for arbitrary operators A and B. It is of some interest,
therefore, to know whether estimates like the ones above are possible under
conditions weaker than normality. Our first result (Theorem 1 below) re-
places normality by subnormality of A and B*. Further, it turns out that in
this broader case the same constant c{ as in (2) above does the job. This
opens up some interesting possibilities which we discuss below.

Recall that an operator A in L(H) is subnormal if it has a normal
extension; i.e., there exist 1. Hilbert space K containing H as a subspace and
a normal operator M in L(K) which leaves H invariant and which coincides
with A when restricted to H. If there is no reducing subspace of M lying
between H and K, then M is called the minimal normal extension of A.
Every subnormal operator has a minimal normal extension [6].

TueoRreM 1.  Let A, B be operators on H,, H,, respectively, such that A
and B* are subnormal and dist(o(A),0(B))=8>0. Let X € L(H,, H)). If
AX — XB is a Hilbert-Schmidt operator, then X is also Hilbert-Schmidt and

8 X|iz < |AX — XBjl,. @)
If AX ~ XB lies in a subspace & of L(H,, H,) which is the natural domain

of a symmetric norm |||-||| (i.e. & = (S € L(H, H,): |IiS||| < c0}), then X € &
and

Sl Xl < esli AX — XBl|, 4)
where c; is the constant for which the inequality (2) holds.

Proof. Let M and N* be the minimal normal extensions of A and B*,
respectively. If M and N act on K, and K, respectively, then relative to the
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decompositions K, = H,@H* and K; = H,®H;" we have the representa-

tions
o I A

Let Y be the operator from K, to K,, which in the above decomposition has
the representation

_(X 0
y_(o 0).
Then note that

_yw—[AX-XB 0
MY -YN ( 5 0).

Now, by the spectral inclusion Theorem [6, p. 107], o(M)C o(A) and
o(N*) C o(B*), and hence o(N)C o(B). Hence dist(o(M),a(N))=>8>0.
Yow apply the result of Bhatia, Davis, and McIntosh [4] to M and N. All the
wertions of the theorem follow.

Remarx. It was shown in [4] that the constant cj satisfies the inequali-
ties

w
g S<a, (5)

vhere ¢, is a constant associated with an extremal problem for the Fourier
ransform:

for zf+x§>l}.
x, +ixg

Cg=iﬂf{||f||1.,(n')= FEL(R?), ﬂzln xg)=——
jubsequently, R. Bhatia, C. Davis, and P. Koosis [3] have shown that

o w
3 <f <5 Si(r) <281, (8)

sin¢
Si(x) =":Tdt.
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The lower bound on ¢} in (5) was obtained from an example in which A and
B were unitary operators. Since our Theorem 1 shows that the same constant
works for a larger class of operators A and B (including, for example, shift
operators), it might prove useful in the evaluation of the constants ¢; and c,.

We now consider the case of arbitrary A and B. Here, no estimate like (1)
or (2) is possible, as mentioned earlier. However, another kind of inequality
can be obtained. Given a Hilbert space H, let H=H®H, and for A € L(H)
let A be the element of L(H) having the representation

(2 %)

If H is finite-dimensional, then o( A) is the union of o(]A[) and — a(|A)), i.e.,
the eigenvalues of A are the singular values of A together with their
negatives. If H is infinite-dimensional, then the above statement is true with
a small modification:

o(A)\ {0} =a(1ADU[ - s(lAD] N (0}

(See [6, p- 39].)
Following the ideas introduced by F. Kittaneh (8], we deduce our next
result, which, for simplicity, we state only for the Hilbert-Schmidt norm.

TueoreM 2.  For operators A, B on H,, H,, respectively, define Aand B
via (7). Suppose dist(a(A), o(B))=8>0. Let X € L(H,, H,) be such that
AX — XB and A*X — XB* are both Hilbert-Schmidt operators. Then X is also
Hilbert-Schmidt and

gllxllzs(”AX_XB”g';"A'X—XB‘"%)1/2 .
Proof. Define an operator Y from H, to H, by putting
=[5 %l
Then note that
Ar-vB=[ 0y A% ©
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Since A*X — XB* and AX — XB are both Hilbert-Schmidt operators, 50 is
AY — YB. Now apply the result (1) to the self-adjoint operators A and B to
get that Y is Hilbert-Schmidt and

BIYlle < NAY — YB|;. (10)

Since ||Y[|§=2||X||3 and ||AY — YB||Z = ||A*X — XB*||} + | AX — XB||3, the
inequality (8) follows from (10).

REMARKS.

1. The results of Bhatia, Davis, and McIntosh for self-adjoint A, B [4]
are valid for other norms. Using those results, we get under similar condi-
tions, instead of (10), the inequality

81l < cill AY - YB| (1)
for every symmetric norm, where the constant ¢{ is the one for which the
inequality (2) holds when A and B are self-adjoint. Norms of the * blown-up”
operators are linked to those of their matrix components. Thus, for example,
for the operator norm (11) becomes

811X || < ¢f max(|| AX — XBJ|, || A*X — XB*|)).
In the same way, for the Schatten p-norms we have

IYIZ=2(X)I5 and [|AY —YBJ||2=||A*X — XB*|| + || AX — XBJ|5.

Thus inequalities akin to the above can be derived from (11) for these norms

as well.
2, It was shown in [4] that

/3 <ci<ey (12)

where c, is a constant associated with a Fourier extremal problem on the
line:

z 1
o= it fll s £ € LiR), (8) = for 11> 1).

It follows from old work of B. Sz.-Nagy [12] that c, = 7/2. The lower bound
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in (12) was obtained in [4] by constructing a matrix example with self-adjoint
A and B. It is conceivable that the inequalities derived above could be useful
in the evaluation of the constant c{.

3. Let
_|0 1 B 0o -
'[1 0] and B'[—l o]‘
Then § = 0, whereas 8§ = dist(s(A), o( B)) = 2. On the other hand, if we take

1 o0 1 0
A_[o 1] — B‘[l 1]'

then & = 0 but & > 0. So, in general, there is no relation between the distance
& between o(A) and o(B) and the distance § between o(A) and o B).

4. If the spaces H, and H, are finite-dimensional, then by the remarks
preceding the theorem, § is the distance between the singular values of A
and those of B.

5. If A and B are normal, then the spectral mapping theorem implies
that § < 8. This inequality may be strict, as is demonstrated by the example

A=[(1) ] and  B= [—1 ol

However, for nonnormal operators we may have 8 < §, as we have seen in
remark 3.

6. If A and B are normal, then by the Fuglede-Putnam theorem modulo
the Hilbert-Schmidt class [13}, we have || AX — XB||, =||A*X — XB*||,. So, in
this case (8) becomes §(|X||, < ||AX — XB|,. In view of Remark 5 above, this
is weaker than the inequality (1).

Our next result is one of the kind which are known as “sin§ theorems” to
numerical analysts [5]. We will obtain such a theorem for singular vectors of
arbitrary operators by combining a result of [4] and an extension of the
Araki-Yamagami inequality [1] obtained by Kittaneh [7].

Let A, Be L(H), and let K,, Kz be two closed subsets of the positive
real line R ,. By the spectral theorem we have the representations

1Al= [AdB(A),  1BI= [AdPs(M),

1% = [AdBi(A),  |B*I= [AdB5(M),
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where P,, Py, P/, P; are spectral measures concentrated on R . Let E=
P(K,) E'=PJK,). F=PyKpg), F'=Pi(Kg). (In the matrix theorist's
language E is the projection operator onto the subspace of H spanned by the
right singular vectors of A corresponding to its singular values lying in K,. In
the same way E’ is the projection operator corresponding to the left singular
vectors of A for its singular values lying in K,). As explained in [4], the
theorem below gives a bound for the “angle” between E and F* and that
between E’ and F’*.

Tueorem 3. Let A, B€ L(H) be such that their difference A — B is a
Hilbert-Schmidt operator. Let K,, Ky be two subsets of R, with
dist(K,, Kg)=8>0. Let E,F,E',F’ be the projection operators defined
sbove. Then

8%(||EFI+ |IE'F'I3) < 2I|A - BjI3.
Proof. By the results in Sections 2 and 6 of [4] we have
82| EF|IE <]l 1A1 - 1B] |2
SYEFE<| 1A% - 1B [
On the other hand, Theorem 2 in [7] tells us that
I 1Al = (B] llz+ Il |A*] - 1B*| [}z < 21A - BII3.

Tombining these inequalities leads to the desired result.

Our next result concerns the continuity of the map A — |A| for Hilbert-
pace operators. Recently F. Kittaneh and H. Kosaki [9] have proved that

172 for 1<p<oo,

I1A1=1B1 ll2p < (llA + Bll3, [|A = Bllg, )
vhere ||-||,, denotes the Schatten p-norm. This can be rewritten in the form

l(AI-1B)?[, <A+ Bllg, 1A= Bilg, for l1<p<co. (13)

this result was proved by applying an inequality of Kittaneh (8] which
atends to the p-norm an earlier result of Powers and Stermer [10]. This
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result, however, has been further extended to all symmetric norms by Bhatia
{2). Using this latter result and the arguments of [9], we obtain:

THEOREM 4. Let A, B€ L(H) be such that A — B belongs to the norm
ideal associated with a symmetric norm |||-|||. Then

llcar-1B0*||<na + BiiA - By
Proof. By [2, Corollary 3] we have
llcar-18p*ll <l - 1B2|). (14)
We can write
|- |B*=4[(A—B)*(A+B)+(A+B)*(A~B)].  (15)

For every symmetric norm we have the well-known inequality ||XTY||| <
IXNMNTNMNY ]I, valid for all T in the norm ideal associated with |||-]|| and all
X,Y € L(H). (See, e.g. [4].) Use this and the identity (15) to estimate the
right-hand side of (14). Recall that |||T*|||=||T||| for all T. The theorem
follows.

Notice that for the p-norms Theorem 4 says
[(1a1-1B)*|, <11A + By 1A - B, (16)

The inequality (13) is stronger than (16) for some operators and weaker for
some others. Notice that (16) could be obtained by the argument in [9] if
instead of using the Holder inequality one used the inequality || XY||, <
XY,

In thpe same spirit Theorem 2.2 of [9] can be generalized using a result
from [4] as follows:

Tueorem 5. Let A,B€ L(H) be such that |A|+ |B|=cl>0 and
A — B belongs to the norm ideal associated with a symmetric norm |||- ||. Then

cll 1A~ 1Bl <A+ BillA - Bl
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To prove the theorem we need:

ProrosiTion 8. If A, B are self-adjoint operators and A+ B>cl >0,
then for every symmetric norm we have

cllA - Bll| < |l|A®* - B¥j.

Proof. Let S=A— B, T =i(A+ B). The hypothesis implies that o(T)
and o(T*) lie in half planes separated by a distance 2¢. Hence by Theorem
3.32in [4] applied to the equation TS — ST* = 2i( A2 — B2) we get c|||S|| <
nA* - B3|,

Proof of Theorem 5. Apply the above proposition to the operators |A|
and |B|. Then proceed as in the proof of Theorem 4.
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