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ABSTRACT

For the pair of matrix equations AX =C, XB =D this paper gives common
solutions of minimum possible rank and also other feasible specified ranks.

1. INTRODUCTION

In some applications requiring solution of matrix equations one has to seek
solution matrices of prescribed ranks. The reflexive generalized inverse (g-
inverse) of a matrix A is a matrix X of minimum rank satisfying the equation

AXA=A

(see e.g., [6, Lemma 2.5.1]). Some g-inverses of A of maximum rank which
lead to basic solutions of consistent equations Ax = y have been found useful
in linear programming computations ([7]; see also Section 2.8 in [6]). Seshu
and Reed [8, Theorem 4-23] show that two nonoriented graphs ¢, and 9,
with the respective incidence matrices A, and A, are 2-isomorphic iff the
matrix equation

A, =XA,

admits a nonsingular solution X. Similar conditions are also involved in the
verification whether each row of a matrix F corresponds to a cut set or
element disjoint union of cut sets of a graph ¥[8, Theorem 4.16).

Keeping such possible applications in view, the author, in an earlier paper
[3], obtained solutions of prescribed ranks for the following systems of matrix
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equations

AX=C, (1]

AXB=C, (1)

where A, B, and C are given matrices. In the present paper, for complex
matrices A, B, C, D, and X of appropriate order, we consider the system

AX=C, XB=D. (1)

Necessary and sufficient conditions for the equations AX=C, XB=Dto
have a common solution were given by Cecioni [2], and the expression fora
general common solution by Rao and Mitra [6, p. 25]. For the pair of
equations in (III) we obtain a common solution with the minimum possible
rank and in fact for any feasible specified rank. The method illustrates another
beautiful application of the mini inorm g-i similar to that in
the representation of shorted operators [5).

Interesting byproducts are solutions for the systems (I) and (IT) with
prescribed ranks for the expression EXF, where E and F are given matrices. It
is conceivable that in some applications while solving a matrix equation one
may be interested in a particular minor of the solution matrix. One may
accordingly stipulate that this minor be of a specified rank. We note that a
minor of X can always be expressed in the form EXF for suitable choices of
matrices, E and F.

2. RESULTS

Let &" and ¥™*" denote respectively the vector spaces of complex
n-tuples and complex matrices of order m X n. Let %, denote the cone of
hermitian nonnegative definite (n.n.d.) matrices of order n X n. For a matrix
A, A’ denotes its transpose, A* its complex conjugate transpose, #(A) its
column span, and A7(A) its null space. A~ denotes a generalized invere
(g-inverse) of A, and A, v, a minimum N seminorm g-inverse [6]. The class of
minimum N seminorm g-inverses of A is denoted by { A, v, ). (A: B) denotes
a partitioned matrix, the partitioning being understood columnwise. For
matrices A, BE %, we write A> Bif A— B€ ¥,. For N € ¥, and subspace
& of &, the shorted matrix /(N ) is the unique matrix in €, which is such
that

H(F(N))c&,
N> ¥(N),
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and if CE€,, #(C)C &, and N> C, then #(N)> C. The existence of
#(N) was established by Anderson and Trapp [1].

Further, two subspaces ofa vector space are said to be virtually disjoint if
their i lusively of the null vector. We need the follow-
ing properties of A, ).

Tueorem 1. G € (Anw) iff
AGA=A, (NGA)*=NGA. (1)

Tueorem 2. IfG€ (A, my)

(a) NGA is unique with respect to choice of G in this class.

(b) NGA€¥,, N-NGAE€¥,.

(c) #(N - NGA) is virtually disjoint with #(A*).

(d) #(N)=#(NGA)®.#(N — NGA).

(e) #(NGA)= A(N)N H(A%).

(f) If ¥ = M(A®*) then NGA = S#(N).

Theorem 1 is proved in Rao and Mitra [6, p. 46}, and Theorem 2 in Mitra
and Puri [5].

We next prove a few lemmas which are also needed. The lemmas are also
of independent interest. Let A, E € €,,, B, F € €, and the equation

AXB=C (2)
be consistent. Let £ denote the class of solutions of (2).

Lemma 1. miny ¢ grank EXF = rank EA_ ¢ C[B, f)|*F, and the mini-
mum is attained by X = A, C[B,p)]* €.

Proof. For X €Q
EA e,C| Brr)|*F = EA; 5 AXB[ By )| *F
( m(E)) EXFB, (F)B

on account of (1). From this Lemma 1 follows, since A, £,C[B;f,]* clearly
is a solution of (2).

Let A€ ¥P*™, BE¥"*9, C€¥P>9, Ec €™, Fe¥"*!, and the
equation AXB =C be consistent. Let  denote the class of solutions. As a



174 S. K. MITRA

simple corollary to Lemma 1 we have Lemma 2. See also Mitra [4] in this
connection.

LeEmMMA 2. miny g rank EXF = rank E*E(A®A), z.) A*CB*
([BB*](rre))*FF*, and this minimum is attained by

X = (A*A) m(£+£)A*CB* [(BB*) mirre)] * €. ®

LemMa 3. Let NE€¥,, ¥ Cé" and I C M[N— ¥(N)). Then
(#07)(N)=2(N)+T(N), )
where (N ), 7 (N), and (¥ ®T XN ) denote the shorted versions of N with
reference to subspaces &, T, and & ® T respectively.

Proof. Write Ny=(#®J )(N), and observe that by definition of 2
shorted operator N> N,. Also #(Ny)=S[(L ST )N)|= (LN (%8
T )}(N)=S(N) by Corollary 5 to Theorem 1 in [1]. Hence

N-%(N)>N,—2(N,)
= H[N-F(N)] cH[N-5(N)].

We next observe that, on account of (1) and Theorem 2(f),

y*N"x=0 Ve H[N-%(N)],yc#[#(N)] and VN,
Hence

y*N'x=0 Vie#[Ny—L(N)],ye#[#(N)] and ¥N-.
Further, #(N,)= (£ ©.5 )N A(N)= (& N #(N))®I by Theorem %k
since 7 C A(N). Hence #[N, — S(N,)]C A[F(N)]®T. Let x be m
arbitrary vector in [N, — #(N,)]. Write x =x, + x5, where x, € Jand
%, € M[SL(N)]. Then y*N"x=y*N x,=0Vy € H[F(N)] = (NN
x,=x,=0, since N~ € ((¥(N))" ) (by Theorem 2.4 in [5)) and r,€

H[FN)]) = x=x, = M[Ny— PN C T = T[Ny~ F(Ny)] =N,-
FP(Ny) < T (Ng)< T(N). Unless equality holds here, 3K €€, such tha
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K#0,4(K)C 7, and
Ny=%(N)+T(N)-K.

Since #(K)& H[SF(N)), Ju € €" such that u € ¥ [L(N)], u& H(K),
and

u*Nyu = u*7 (N )u— u*Ku,
which is strictly less than u*J (N )u. This contradicts the inequality
N> T (Ny)=T[(¥0T}(N)|=[(¥eT)nT|(N)=T(N).
Hence Ny — S(Np) = Z(N) and Lemma 3 is established.

That (4) is not true in general can be seen for n = 2 with

v 1) omall) o el

Note that here (4) is not true even though & and J are virtually disjoint.
Let A€ €¥P*™, Be¥"*9, C€¥P*", DE¥™*9, and the equations
AX=C and XB = D be individually consistent. Assume further
AD=CB, (5)
which is both necessary and sufficient for the pair of equations
AX=C, XB=D (6)
to have a common solution. Assume without loss of generality that
rank C < rank D. Y]
If X is a common solution,
rank X > max{rank C,rank D } = rank D. (8)

Tueorem 3. The pair of equations (6) have a common solution of rank
equal to rank D iff

rank CB = rank C. 9)
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Proof. If X is a common solution, by the Frobenius inequality

rank AXB + rank X > rank AX + rank XB
= rank X > rank C + rank D — rank CB,

From this, the necessity of the condition (9) follows.
If (9) holds, Y = C is a solution of the equation

YB=AD

of rank equal to rank AD. Hence by Note 1 following Lemma 2.2 in Mitra [3),
there exists a g-inverse (B~ ), of B such that

C=AD(B"),.

Clearly X = D(B™), is a common solution of rank equal to rank D. This
concludes proof of sufficiency part and of Theorem 3.

We next consider the case where
rank C — rank CB=46 > 0.

Here let CB; be a matrix of 8 linearly independent columns such that

#(C)=#(CB)o#(CB,). (10)
Since #(C) C #(A), the equation

AY=CB, )
is consistent. Let Y = K be a solution. Clearly the 8 columns of B, are linearly
independent. This implies that the equation XB,= K is consistent, which
together with the consistency of XB= D and on account of (10) implies the
consistency of
X(B: B))=(D:K).

Also

A(D:K)=C(B: B,)
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and
rank C(B: By) = rank C.

This implies that the pair of equations
AX=C, X(B:By)=(D:K) (12)

satisfy the conditions of Th 3 and therefore have a solution of
minimum possible rank equal to rank(D: K). Noting that each common
solution to the pair of equations (6) corresponds to a matrix K which also
satisfies (11), we see that the problem of finding a minimum rank common
solution to the pair of equations (6) reduces to that of finding a solution Y of
(11) such that rank(D: Y ) is minimum, or equivalently rank EY is minimum,
where

#(E*)=#(D*),
since for such a choice of E, rank EY = rank(D:Y)—rank D. (See e.g.
Lemma 7.1.2 of Rao and Mitra [6], which is precisely the same result for the
real case. The proof for the complex case is similar.)
Assume now that E is n.n.d. One such choice of E is given by
E=1-D(D*D)  D*.
By Lemma 2, the required choice for Y is given by
Y =(A%A)mE)A*CBy = K, (say), (13)

and the minimum possible rank for a common solution to the pair of
equations (6) is

rank(D: (A*A) m(£)A*CB, ).
We have thus arrived at the following theorem.

TheorEM 4. Let rank CB < rank C < rank D. Let B, be determined as in
(10). If X is @ common solution to the pair of equations (6),

rank X > rank(D: (A*A) m(£,A*CB, ). (14)

Further, the lower bound is attainable.
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A solution of mi possible rank in this case is obtained as
indicated in proof of Theorem 3, as applied to (12) with K replaced by K,
defined in (13).

Assume now that (9) holds, so that we are in the situation covered by
Theorem 3. In terms of a particular common solution D(B~), to the
equations in (6), a general common solution is given by

X=D(B" )o+(I—- AA)Z(I- B(B),), (15)

where Z € ¥™*" and is arbitrary (Theorem 2.33 of [6]). For reasons which
will be clear shortly, we choose A, for A~ so that

I-AA=I-Aj,A=1-A*(AA*)"A=Q
is n.n.d. Let us rewrite (15) as
X=D(B" )o+ Q(D*)mD*Z(I~ B(B™ )o)
+0Q(I = (D*)miD*)Z(1~ B(B™ )o)
=D(B" ), +Q(I = (D*)myD*)2(1 ~ B(B™ )y),

where (B~ ), =(B" )y +[(D*)p0) *QZ(I - B(B™ ),)€ {B™ }.

Since the row spans of D(B~ ), and I — B(B™ ), are virtually disjoint and
by Theorem 2(c) 4 [Q(I — (D*)r(0yD*] is virtually disjoint from .#(D), we
have

rank X
=rank D(B~ ), +rank{ Q(I = (D*) m(o)D*)Z(I - B(B~ ),
< rank D(B" ), +min(rank Q(I = (D*) mg)D* ), rank[ I — B(B~ )]}
= rank D +min{rank(Q: D) — rank D, n — rank B} using Theorem 2(d)
= min{rank(Q: D), n — rank B +rank D}
= min{m — rank A +rank AD, n — rank B + rank D }

=min{m —rank A +rankC,n —rank B+rank D} =0 (say), (16)
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since
rank(Q: D) = rank(Q: DD*) = rank(Q: DD*A*)
+rank Q +rank DD*A*
=m— rank A +rank AD. 17

Forrank D < s < @, X will be a common solution of rank equal to s iff Z is so
chosen that

mnkQ(I—(D‘),;w)D‘)Z(I—B(B' )o) =8 — rank D. (18)
A general common solution of rank s is given by
X =D(B" )o+ Q(D*)myD*Zo(I - B(B~ )o)
+Q(I—(D*)m@D*)Z(1 - B(B™ o), (19)

where Z, € ¢™*" is arbitrary and Z € ¥™*" satisfies the condition (18) but
is otherwise arbitrary. A general common solution of rank s in the general
case when (9) is not true can be obtained in a like manner with the help of
Theorem 4.

For completeness we describe here a method of obtaining a solution X of
the consistent equation AXB = C such that the matrix EXF has a specified
rank. We confine our attention to the case where the coefficient matrices A,
B, E, and F are hermitian n.n.d. as considered in Lemma 1. The general case
corresponding to Lemma 2 can be treated in a like manner. Let &, be an
integer,

8, < min{rank E(I - Ay, z,A),rank F(I - B;£,B)},
and A, B, be matrices of rank 8, in ¥™*% and ¥"*? respectively such that
M(Ag)C H[E(I - AL p\A), #(By)C #[F(I - B £,B)). Put A, = A, A},
B,=ByB}, C,= AyBg, and consider the equation
(A+A,)X(B+B,)=C+C, (20)

This equation is clearly consistent, and any solution of it is a solution of (3). A
solution of (20) which gives the minimum possible rank for EXF is, by Lemma
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1, given by

Xo=(A+A)ne(C+C)[(B+B))nr|".
Further, by Lemma 3,
rank(EX F) = mnk{E(A + Al)r:l(E)C[(B 2 Bl);(F)]'F
+E(A+A)ne,Ci[(B+ 51)’;”;]"“}

= rank{ EA 7 £,C[(B) i) *F + E(A1)iesCi[(B)) e F)
=8+,

where 8 =rank{ EA_, £ C[(B).(r)]*F}, since if & =#(A), T =H(4)
then

(y’ef)(E)= E(A + Ax)r;(t:)(“‘ + Al)
=E(A+A))ppA+E(A+A))npA,
=S(E)+T(E)=E(A)mp)A+E(A))mpA,

= E(A+ Al);(E,A= EAL A, E(A+A)) A = E(A)) mpAr
Similarly F(B + B,),,r\B = FB,, B, F(B + B, ) ,B; = F(B\)p(r\B\-
Thanks are due to Thomas Mathew for providing the simplification given
in (17).
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