THE NUMBER OF OPEN CHAINS OF LENGTH THREE AND THE PARITY OF THE NUMBER OF OPEN CHAINS OF LENGTH & IN SELF-COMPLEMENTARY GRAPHS

Siddani Bhaskara RAO

Stat.-Math. Division, Indian Statistical Institute, Calcutta-700035, India

Received 15 November 1978 Revised 25 May 1979

In this paper it it shown, using the Sleve formula, that the number of open chains of length k $k \ge 5$, in a self-complementary (s.c.) graph is always even. As a corollary, it follows that the number of hamiltonian chains in a s.c. graph of order p > 5 is even, a result proved earlier by Camion. Further, the minimum number and the maximum number of open chains of length 3 in s.c. graphs of order p are determined, and the s.c. graphs of order p which attain these bounds are characteristic.

1. Introduction and definitions

All graphs considered in this paper are finite, undirected and have neither loops nor multiple edges. For a graph G, the symbols V(G) and E(G) denote the vertex set and the edge set of G, respectively. A graph G is said to be self-complementary (abbreviated, s.c.) if G is isomorphic with its complement \bar{G} . It is well known that if G is a s.c. graph of order p, then $p \equiv 0$ or $1 \pmod{4}$. For most of the known results on s.c. graphs refer to Rao [5]. For a labeled graph G and an unlabeled graph H, let H(G) be the number of nonidentical labeled subgraphs of G isomorphic to H. Denote by C_k , P_k the cycle and open chain, of length k, respectively. Note that C_k has k vertices and P_k has k+1 vertices. P_k is referred to as an open k-chain.

Let p = 4N or 4N+1; and $P_3^*(p)$ (respectively, $P_3^{**}(p)$) be the minimum (respectively, maximum) value of $P_3(G)$ where G is a s.c. graph of order p.

Clapham [2], (see also Camion [1]) proved that every s.c. graph has a hamiltonian chain.

Camion [1] proved, using the Sieve formula, that if p > 5 then the number of hamiltonian chains in a s.c. graph G of order p, that is $P_{p-1}(G)$, is even. In Section 1 using similar methods as in Camion [1], we determine the value of $P_3(G)$ and prove that $P_4(G)$ is even if and only if either p = 4N, or p = 4N + 1 but N is even, and also prove that $P_4(G)$ is even whenever $k \ge 5$. In Section 2, we determine the values of $P_3^{**}(p)$, and $P_3^{***}(p)$ and characterize the s.c. graphs of order p which attain these bounds.

All sequences considered in this paper have positive terms and are in nonincreasing order. A sequence $\pi = (d_1, \dots, d_p)$ of length p is said to be potentially s.c. sequence if there is at least one graph G with degree sequence π , referred to as a realization of π , which is a s.c. graph. A sequence π with even sum is suitable if either p = 4N, and

- (1) $d_i + d_{n+1-i} = p-1$, for i = 1, ..., 2N,
- (2) $d_i = d_{i-1}$, for i = 2, 4, ..., 2N.

or p = 4N + 1, for some N, and

(1)
$$d_i + d_{p+1-i} = p - 1$$
, for $i = 1, ..., 2N + 1$, $d_i = d_{i-1}$, for $i = 2, 4, ..., 2N$.

If π is suitable with p = 4N, then

$$\pi = (a_1, a_1, a_2, a_2, \dots, a_N, a_N;$$

 $p - 1 - a_N, p - 1 - a_N, \dots, p - 1 - a_2, p - 1 - a_2, p - 1 - a_3, p - 1 - a_4)$

and therefore π can be actually specified by the sequence $\pi^* = (a_1, \ldots, a_N)$, called the reduced sequence of π . Conversely, given a sequence $\pi^* = (a_1, \ldots, a_N)$ such that $p-1 \ge a_1 \ge \cdots \ge a_N \ge 2N$, then the corresponding full suitable sequence π of π^* is determined when p=4N. If p=4N+1 and π is a suitable sequence, then

$$\pi = (a_1, a_1, \dots, a_N, a_N, 2N, p-1-a_1, p-1-a_1)$$

and $\pi^* = (a_1, \dots, a_N)$ is called the reduced sequence of π and π is called the full suitable sequence of π^* . A sequence π^* is reduced-graphic if the sequence π is graphic.

We need the following special graph $G_{max}(p)$ in Section 3.

For p = 4N, let $G_{max}(4N) = G$, be the graph with $V(G) = A \cup B$ where

$$A = \{1, 3, \dots, 4N-1\}, B = \{2, 4, \dots, 4N\}$$

and A is complete, B is independent in G and for $i \in A$, $j \in B$, $(i, j) \in E(G)$ if and only if one of the following holds: (i) j = i + 1, (ii) j = i + 3 and $i = 3 \pmod{4}$, (iii) j > i + 4.

For p=4N+1, let $G_{\max}(4N+1)=H$, be the graph with $V(H)=A\cup B\cup \{4N+1\}$, and the subgraph induced on $A\cup B$ is identical with $G_{\max}(4N)$ and $(4N+1,i)\in E(H)$ if and only if $i\in A$.

Note that the degree sequence of $G_{max}(p)$, denoted by $\pi_{max}(p)$ is the full suitable sequence of $(p-2, p-4, \ldots, 2N+\varepsilon)$, where $p=4N+\varepsilon$ and $\varepsilon=0$ or 1.

2. The value of $P_1(G)$ and the parity of $P_k(G)$, $k \ge 4$

In this section we determine the exact value of $P_3(O)$ and the parity of $P_k(G)$, $k \ge 4$ where G is a s.c. graph, by applying the Sieve formula [8, p. 19]. To this end

define, for $0 < r \le |E(G)| = q(G)$ and subsets U_r , of E(G) with $|U_r| = r$; $W_1(U_r)$ to be the number of nonidentical cycles of length i containing the edges of U_r , of the labeled K_p , the complete graph of order p, and let

$$W_i(r) = \sum W_i(U_r), \tag{2.0}$$

where the summation is to be taken over all subsets U_r , of E(G) with $|U_r| = r$. For r = 0, define $W_r(0) = C_r(K_n)$. Then by the Sieve formula $\{8, p, 19\}$, we have

$$C_i(\bar{G}) = C_i(K_p) - W_i(1) + W_i(2) + \dots + (-1)^i W_i(i),$$
 (2.1)

where p is the order of G and $i \ge 3$. Notice that

$$W_i(i-1) = P_{i-1}(G),$$
 (2.2)

$$W_i(i) = C_i(G), \tag{2.3}$$

$$C_i(K_p) = \frac{i!}{2i} {p \choose i}, i \ge 3.$$
 (2.4)

It is clear from (2.4) that

$$C_i(K_p) = 0 \pmod{2}, \quad \text{if } i \ge 5$$
 (2.5)

Now we are ready to obtain the values of $P_3(G)$ and $C_3(G)$ as functions of p and the degree sequence of G.

Theorem 2.1. If G is a s.c. graph with degree sequence $\pi = (d_1, \ldots, d_p)$, then $P_3(G) = p_3(\pi)$ and $C_3(G) = c_3(\pi)$ where

$$p_3(\pi) = 2 \binom{p(p-1)/4}{2} - 3 \binom{p}{4} + (p-5) \sum_{i=1}^{p} \binom{d_i}{2}.$$
 (2.6)

$$2c_3(\pi) = \sum_{i=1}^{p} {d_i \choose 2} - \frac{p(p-1)(p-2)}{12},$$
 (2.6a)

and further

$$P_3(G) - 2(p-5)C_3(G) = 2\binom{p(p-1)/4}{2} + \frac{p(p-1)(p-2(p-5)}{12} - 3\binom{p}{4}$$
 (2.6b)

In particular, all s.c. graphs with the same degree sequence have the same number of open 3-chains, and have the same number of triangles.

Proof. By (2.1), (2.2) and (2.3) and the fact that $C_i(G) = C_i(\overline{G})$ we have

$$P_3(G) = W_4(3) = C_4(K_4) - W_4(1) + W_4(2).$$
 (2.7)

Clearly, $W_4(1) = q(G) \cdot (p-2)(p-3) = 6\binom{n}{2}$, since for a s.c. graph G or order p, q(G) = p(p-1)/4. To calculate $W_4(2)$, divide the set of all unordered pairs of distinct edges of G into two classes, the first (resp. second) class consisting of the pairs of adjacent (resp. nonadjacent) edges of G. The contribution to $W_4(2)$ by

the first (resp. second) class is p-3 (resp. 2) for each pair and hence is

$$(p-3)\sum_{i=1}^{p} {d_i \choose 2}$$
 (resp. $2 {q(G) \choose 2} - 2\sum_{i=1}^{p} {d_i \choose 2}$).

Substituting these values of $W_4(1)$, $W_4(2)$ and the value of $C_4(K_p)$ from (1.4) in (2.7) we have that $P_3(G) = p_3m$. Since $C_3(K_p) = (5)$, $W_3(1) = p(p-1)(p-2)/4$ and $W_3(2) = \sum_{i=1}^{n} (\frac{1}{2})$, it follows from (2.1) that $C_3(G) = c_3(\pi)$ of (2.6a) and then it is easy to verify that (2.6b) holds.

Corollary 2.2.

$$P_3(G) = (p/4) \pmod{2}.$$
 (2.8)

Proof. Since p = 4N or 4N + 1, it is enough, by (2.6), to prove that

$$(p-5)\sum_{i=1}^{p} {d_i \choose 2} = 0 \pmod{2}.$$

This is trivial if p = 4N + 1 and in the case p = 4N since, by a result of Ringel [7]. Sachs [9] the number of vertices, in a s.c. graph of order 4N, whose degree is equal to a given value is even, the corollary follows.

We now state and prove the main lemma of this section.

Lemma 2.3. If G is a s.c. graph of order p and $i \ge 5$, then

$$P_{i-1}(G) = (p-i+1)P_{i-2}(G) \pmod{2}. \tag{2.9}$$

Proof. From (2.1), (2.2) and (2.3) and the fact that $C_i(\bar{G}) = C_i(G)$ it follows that

$$P_{i-1}(G) = [W_i(1) + W_i(2) + \dots + W_i(i-2)] \pmod{2}.$$
 (2.10)

We first prove that

$$W_i(i-2) = (p-i+1)P_{i-2}(G) \pmod{2}$$
(2.11)

and then show that

$$W_i(j) = 0 \pmod{2}, \quad \text{if } 1 \le j \le i - 2.$$
 (2.12)

To prove these, consider a subset U_i of E(G) with $|U_i|=j$. We may suppose that $W_i(U_i)>0$. Let s be the number of components in the subgraph of G induced by these j edges of U_i , on the vertices incident to at least one edge of U_i .

First suppose that j = i - 2, then s = 1 or 2. If s = 1, then these i - 2 edges form an open chain of length i - 2 and $W_i(U_i) = p - i + 1$; whereas if s = 2, then these two components, which necessarily have to be open chains, together account for i vertices and therefore $W_i(U_i) = 2$. Thus (2.11) holds.

Next suppose that $1 \le j < i - 2$. We first prove that $W_i(U_i) = 0 \pmod{2}$. Let i be the number of vertices of G incident with at least one edge of U_i . Clearly $i \le i$. If i = i, then since j < i - 2, we have that s > 2 and in this case it is clear that

$$W_i(U_i) = (s-1)!(2^{s-1}-1) \equiv 0 \pmod{2}$$
.

If t = i - 1, then these $s \ge 2$ components have together exactly i - 1 vertices and

$$W_i(U_i) = s!2^{s-1} \cdot (p-i+1) = 0 \pmod{2}$$
.

Therefore we may assume that $i \le i-2$. Let C be any cycle of length i of K_p containing the edges of U_p . Throughout the following we fix this i and U_p . Label the vertices of C by two marks as follows: label a vertex with a blue mark if it is an end vertex of some edge of U_p and a red mark otherwise. Call a maximal subchain of C of like terms (either all blue or all red) a run of C. For k vertex disjoint open chains, $\mu_1 = (a_1, \ldots, a_n)$, $\mu_2 = (b_1, \ldots, b_n)$, \ldots , $\mu_k = (c_1, \ldots, c_n)$ in a complete graph, define $\mu_1 + \mu_2 + \cdots + \mu_k$ to be the cycle

$$(a_1, \ldots, a_n, b_1, \ldots, b_n, \ldots, c_1, \ldots, c_n).$$

Let now B_1 , R_1 , B_2 , R_2 , ..., B_k , R_k be the runs in C in that order so that $C = B_1 + R_1 + B_2 + R_2 + \cdots + B_k + R_k$. Clearly $k = s \ge 2$. For two cycles C, C' of length i of K_p each containing U_p define C to be semi-equivalent to C' if the subgraph on V(C') with edges $\bigcup_{i=1}^k (E(B_i) \cup E(R_i))$, where B_1' , R_1' , R_2' , are the runs of C' so that $C' = B_1' + R_1' + \cdots + B_1' + R_1'$; in particular V(C) = V(C'). Clearly this is an equivalence relation on the nonidentical cycles of length i containing U_i of the graph K_p . We shall prove that each equivalence class contains an even number of cycles. Any cycle D_1 semi-equivalent to C consists of the edges of the runs B_1 , R_1 of C, $1 \le i \le s$, and the other edges of D_1 have one end vertex a blue vertex and the other end a red vertex of C. Thus

$$D_1 = B_h + R_{i_1}^* + B_h^* + R_{i_2}^* + \cdots + B_h^* + R_h^*$$
 (2.13)

where $B_i = B_1$ and j_2, \ldots, j_n is a permutation of $2, \ldots, s$; i_1, \ldots, i_n is a permutation of $1, \ldots, s$; and if R_{i_1} is the open chain (a_1, \ldots, a_n) , then $R_i^* = R_{i_1}$ or the chain (a_n, \ldots, a_n) and B_k^* has similar meaning. Note that $R_i^* = R_i$ if |V(R)| = 1. Further the chain

$$D_2 = B_1 + R_{i,1}^* + B_{i,2}^* + R_{i,1}^* + \cdots + B_{i,1}^* + R_{i,1}^*$$

is semi-equivalent to D_1 if and only if $(i_1, \dots, i_s) = (i'_1, \dots, i'_s)$, $(j_2, \dots, j_s) = (j'_2, \dots, j'_s)$, $R_s^* = R_s$, if and only if $R_s^* = R_s$, and $B_s^* = B_s$ if and only if $B_s^* = B_s$. Now we can count the number of elements in the equivalence class containing C. Note that each B_s has at least two vertices, where as R_s may consist of a single vertex for some values of k. Let s_1 be the number of R_s having exactly one vertex and $s_2 = s - s_1$. If s = 1, then since t < s - 2 it follows that $s_2 = 1$, and the number of cycles of length t semi-equivalent to C is equal to t. Thus we may assume that $t \ge 2$. Then in (2.13) there are $2s_2 + s_1$ choices for R_s^* , and 2(s - 1) choices for R_s^* .

and so on. These imply by what has been said already that the number of cycles semi-equivalent to C is equal to $(2s_2+s_1)\cdot 2(s-1)\cdot t$ (for some integer t) which is congruent to $0 \pmod{2}$. Thus (2.12) holds and then by (2.11) and (2.10), the proof of the lemma is complete.

Corollary 2.4. If G is a s.c. graph of order p, then $P_4(G)$ is even if and only if p = 4N; or p = 4N+1 but N is even.

Proof. By Lemma 2.3, we have

$$P_4(G) = (p-4)P_3(G) \pmod{2}$$

and the corollary follows from Corollary 2.2.

Now we are ready to prove the main theorem of this section which generalizes a result of Camion.

Theorem 2.5. If G is a s.c. graph and $k \ge 5$, then $P_k(G)$ is even.

Proof. Since $P_3(G) = (p-5)P_4(G) \pmod{2}$ it follows by Corollary 2.4 that $P_3(G)$ is even. Then by Lemma 2.3 we by induction have that $P_k(G)$ is even for every $k \ge 5$, and this completes the proof.

Corollary 2.6. (Camion [1]) The number of hamiltonian chains in a s.c. graph of order p > 5 is even.

3. Determination of the values of $P_1^{\bullet}(p)$ and $P_1^{\bullet \bullet}(p)$

In this section we determine the values of $P_3^*(p)$, $P_3^{***}(p)$, where p = 4N or 4N+1 and characterize s.c. graphs which attain these bounds. To this end let

$$s_0(\pi) = \sum_{i=1}^{N} \left[2 \binom{b_i}{2} + 2 \binom{p-1-b_i}{2} \right];$$
 (3.1)

where π is a potentially s.c. sequence of length p, N = [p/4] and $\pi^* = (b_1, \ldots, b_N)$. Further let

$$s(\pi) = \begin{cases} s_0(\pi), & \text{if } p = 4N, \\ s_0(\pi) + {2N \choose 2}, & \text{if } p = 4N + 1. \end{cases}$$
 (3.2)

Then, by Theorem 2.1, for any s.c. graph G of order p, we have

$$P_3(G) = f(p) + (p-5)s(\pi), \tag{3.3}$$

where

$$f(p) = 2 {p(p-1)/4 \choose 2} - 3 {p \choose 5}$$
 and $\pi = \pi(G)$.

Therefore, to find the value of $P_0^*(p)$ (respectively, $P_0^{***}(p)$) it is enough to minimize (respectively, maximize) the value of $s_0(\pi)$ over all the degree sequences π of s.c. graphs of order p.

First we determine the value of $P_3^0(p)$ and characterize s.c. graphs G of order p with $P_3(G) = P_3^0(p)$:

Lemma 3.1. If p = 4N or 4N + 1, then

$$P_3^{\bullet}(p) = \begin{cases} f(p) + (p-5)(8N^3 - 8N^2 + 2N), & \text{if } p = 4N, \\ f(p) + (p-5)(8N^3 - 2N^2 - N), & \text{if } p = 4N + 1. \end{cases}$$
(3.4)

Further, if G is a s.c. graph of order p, then $P_3(G) = P_3^*(p)$ if and only if the degree sequence of G is the full suitable sequence of $\pi^* = (2N, ..., 2N)$.

Proof. By (3.1), (3.2) and (3.3) it is enough to minimize the value of $s_0(\pi)$ over all potentially s.c. sequences π of length p. The ith term of $s_0(\pi)$ is equal to

$$b_1(2b_1-2p+2)+(p-1)(p-2)$$
;

and since $b_i \ge 2N$, it follows that the minimum value of this term is 2N(4N-2p+2)+(p-1)(p-2). Thus the minimum value of $s_0(\pi)$ is $8N^3-8N^2+2N$ if p=4N, and is $8N^3-4N^2$ if p=4N+1. Also if π is the full suitable sequence of $\pi^*=(2N,\ldots,2N)$ then these minimum values are attained. Thus by (3.2) and (3.3), the equation (3.4) holds. Further, it is clear that if $P_3(D)=P_3^*(p)$, then the degree sequence of G is the full suitable sequence of $\pi^*=(2N,\ldots,2N)$.

To determine the value of $P_3^{\text{exp}}(p)$ we need the following characterization of potentially s.c. sequences.

Lemma 3.2 (Clapham [3]). A sequence π of length p is potentially s.c. if and only if π is suitable and its reduced sequence $\pi^* = (b_1, \ldots, b_N)$ satisfies the in-equalities

$$\sum_{i=1}^{r} b_i \le r(p-1-r), \quad \text{for every } r, \ 1 \le r \le N$$
 (3.5)

where N = (p/4).

From the above lemma we shall deduce the following

Lemma 3.3. Let π be a potentially s.c. sequence of length p = 4N or 4N + 1, and $\pi^{\bullet} = (b_1, \dots, b_N)$. Suppose that equality holds in (3.5) for some r_0 . If $1 \le r_0 < N$,

then $b_{r_n} \ge b_{r_n+1} + 2$; if $r_0 = N$ and strict inequality holds in (3.5) for r = N - 1, then $b_{\infty} > 2N$.

Proof. If $r_0 = 1$, then $b_1 = p - 2$ and $b_1 + b_2 \le 2p - 6$. Therefore $b_2 \le p - 4$. Thus we may assume that $1 < r_0 < N$. From (3.5) for r_0 and $r_0 - 1$, we have, after subtraction, that $b_n \ge p - 2r_0$; whereas (3.5) for $r_0 + 1$ and r_0 yield, again after subtraction, the inequality $b_n + 1 \le p - 2r_0 - 2$, and this implies that $b_n \ge b_{n+1} + 2$. If $r_0 = N$, then from (3.5) for N and N - 1 and the hypothesis, we have that $b_N > p - 2N$ and therefore $b_N > 2N$.

To characterize s.c. graphs G of order p with $P_3(G) = P_3^{**}(p)$ we need the following

Lemma 3.4. The only realization of the sequence $\pi_{max}(p)$ which is the full suitable sequence of $(p-2, p-4, ..., 2N+\varepsilon)$ where $p=4N+\varepsilon$ and $\varepsilon=0$ or 1 is the graph $G_{max}(p)$.

Proof. By Lemma 3.1, the sequence $\pi_{max}(p)$ is graphic. We prove that $\pi_{max}(p)$ is unigraphic by induction on N. For N=1, $\pi_{max}(p)=(2, 2, 1, 1)$ or (3, 3, 2, 1, 1) both of which are unigraphic. Assume that the assertion holds for N-1, and $\pi_{max}(p)$ be as in the statement with $N \ge 2$. Let H be any realization of $\pi_{max}(p)=(d_1,\ldots,d_p)$ with $V(H)=\{u_1,\ldots,u_p\}$, and $d_H(u_i)=d_i,\ 1\le i\le p$. Then the vertex, u_1 (respectively, u_2) is necessarily joined to all the other vertices except one vertex v say, (respectively, w). If v=w, then the degree of every vertex of H is at least $S=\{u_1,u_2,v_3,v_4\}$. Thus implies that u_1,u_2 are joined to all the vertices $u_i\ne u$, w. Let $S=\{u_1,u_2,v_3,v_4\}$. Then $d_H(v)=d_H(w)=1$, and both u_1,u_2 are joined to every vertex in V-S. Now the degree sequence $\pi(H_1)$ where H_1 is the subgraph of H induced on V-S is equal to $\pi_{max}(p-4)$. Therefore, by the inductive hypothesis, $H_1\simeq G_{max}(p-4)$. Now by the structure of H described above it follows that $H\simeq G_{max}(p)$ completing the proof.

Lemma 3.5. If $\pi = \pi_{max}(p)$, then

$$s(\pi) = \begin{cases} \frac{2N}{3}(16N^2 - 15N + 2), & \text{if } p = 4N, \\ \frac{N}{3}(32N^2 - 6N - 5), & \text{if } p = 4N + 1. \end{cases}$$
 (3.6)

Proof. If $\pi = \pi_{max}(p)$, then

$$\pi^* = (p-2, p-4, \dots, 2N+\epsilon).$$

where $p = 4N + \varepsilon$ and $\varepsilon = 0$ or 1. Now substituting these values of b_i in $s(\pi)$ of (3.2) and simplifying using values of $\sum_{i=1}^{N} i$ and $\sum_{i=1}^{N} i^2$ it can be seen that $s(\pi)$ is equal to the value mentioned in (3.6) and this completes the proof.

Theorem 3.5. If p = 4N or 4N + 1, then

$$P_3^{\pm \phi}(p) = \begin{cases} f(p) + (p-5)\frac{2N}{3}(16N^2 - 15N + 2), & \text{if } p = 4N, \\ f(p) + (p-5)\frac{N}{3}(32N^2 - 6N - 5), & \text{if } p = 4N + 1. \end{cases}$$
(3.7)

Further, if G is a s.c. graph of order p with $P_3(G) = P_3^{**}(p)$, then $G = G_{max}(p)$.

Proof. Let G be a s.c. graph of order p with $P_3(G) = P_3^{**}(p)$, and let $\pi = \pi(G)$, $\pi^* = (b_1, \ldots, b_N)$. We first prove that $\pi = \pi_{\max}(p)$. For this it is enough to show, that equality holds in (3.5) for every r, $1 \le r \le N$. Suppose that this is not true for some r_0 and let m be the smallest and M be the largest integers with $m \le r_0 \le M$ such that for every r with $m \le r \le M$ strict inequality holds in (3.5). We prove that there is a s.c. graph H of order p with $P_3(H) > P_3(G)$.

We consider two cases.

Case 1. $1 \le m \le M < N$.

Then by the maximality of M, we have that for r = M + 1 equality holds in (3.5), and also if m > 1, then by the minimality of M, we have that for r = m - 1, equality holds in (3.5). These imply by Lemma 3.3 that $b_{M+1} \ge b_{M+2} + 2$, if $M \le N - 2$, and $b_{b_0} > 2N$ if M = N - 1, further if m > 1, then $b_{b_0-1} \ge b_{b_0} + 2$.

Define a new sequence (b'_1, \ldots, b'_N) as follows:

$$b'_i = \begin{cases} b_i & \text{if } i \neq m \text{ and } i \neq M+1, \\ b_i+1 & \text{if } i=m, \\ b_i-1 & \text{if } i=M+1. \end{cases}$$

Now by what had been said above it follows that $b_1 > \cdots > b_N > 2N$. Further, for any r, 1 < r < N, we have that

$$\sum_{i=1}^{r} b_i' = \begin{cases} \sum_{i=1}^{r} b_i & \text{if } r < m \text{ or } r > M, \\ \left(\sum_{i=1}^{r} b_i\right) + 1 & \text{if } m \le r \le M. \end{cases}$$

Since π^* satisfies (3.5), it follows by the definition of m and M that $\pi_1^* = (b_1', \ldots, b_N')$ satisfies (3.5) and hence is reduced-graphic. Let π_1 be the full suitable sequence of π_1^* . Then by Lemma 3.2 π_1 is a potentially s.c. sequence of length p. Let H be a s.c. graph with degree sequence π_1 . Note that $\pi_1^* = \pi^* + \delta_m - \delta_{M+1}$ and $m \le M$, where δ_m is the vector of length N in which the m-th coordinate is 1 and the rest are zero.

It is easy to check that

$$s(\pi_1) - s(\pi) = 2b_m - 2b_{M+1} + 2 \ge 2$$

Therefore, by (3.3), $P_3(H) > P_3(G)$, a contradiction.

Case 2. $1 \le m \le M = N$.

Define a new sequence $\pi_1^* = (b_1, \dots, b_N)$ as follows

$$b_i' = \begin{cases} b_i, & \text{if } i \neq m, \\ b_i + 1, & \text{if } i = m. \end{cases}$$

Then, by Lemma 3.3, it follows that $b_1' \ge \cdots \ge b_N' \ge 2N$ and by the definition of m and M we have that π_1^* is reduced-graphic. Let π_1 be the full suitable sequence of π_1^* . Then π_1 is a potentially s.c. sequence of length p. Let H be a s.c. graph with degree sequence π_1 . Note that $\pi_1^* = \pi^* + \delta_m$. It is easy to check that

$$s(\pi_1) - s(\pi) = 2b_{\infty} - p + 2 \ge 1$$
.

Therefore, by (3.3), $P_3(H) > P_3(G)$, a contradiction.

Thus we have proved that the degree sequence of G is $\pi_{\max}(p)$. Therefore by Lemma 3.5, we have that $P_1^{**e}(p) = P_3(G)$ equals the value asserted in (3.7). Further, by Lemma 3.4, we have that $G \simeq G_{\max}(p)$.

From (2.6a), (2.6b) and Theorem 3.5 we have the following:

Theorem 3.6. If $C_3^{ab}(p)$ is the maximum number of triangles in s.c. graphs of order p, then

$$c_3^{**}(p) = \begin{cases} \frac{N}{3}(N-1)(8N-1), & \text{if } p = 4N, \\ \binom{2N}{2} + \frac{N}{3}(N-1)(8N-1), & \text{if } p = 4N+1. \end{cases}$$

Further, if G is a s.c. graph of order p with $C_3(G) = C_3^{**}(p)$, then $G \simeq G_{max}(p)$

We conclude this paper with the following unsolved problems:

Find the maximum, the minimum number of hamiltonian chains, hamiltonian cycles in s.c. graphs of order p.

For an elegant characterization of s.c. graphs with hamiltonian cycles refer to Rao [6].

Acknowledgement

Many thanks are due to the referee for useful comments and suggestions.

References

 P. Camion, Hamiltonian chains in self-complementary graphs, Cahiers Centre Études Recherche Onér. 17 (1975) 173-184.

- [2] C.R.J. Clapham, Hamiltonian arcs in self-complementary graphs, Discrete Mathematics 8 (1974) 251-255.
- [3] C.R.J. Clapham, Potentially self-complementary degree sequences, J. Combinatorial Theory 20B (1976) 75-79.
- [4] F. Harary, Graph Theory (Addison Wesley, Reading, MA, 1972).
- [5] S.B. Rao, Explored, semi-explored and unexplored territories in the structure theory of self-complementary graphs and digraphs, in: A. Ranachandra Rao, Ed., Proceeding Symposium on Graph Theory ISI, 1976, ISI Lecture Notes Series, No. 4 (MacMillan, India, 1979) 10-35.
- [6] S.B. Rao, Solution of the Hamiltonian problem for self-complementary graphs, J. Combinatorial Theory, Series B (in print).
- [7] G. Ringel, Selbstkomplementare Graphen, Arch. Math. 14 (1963) 354-358.
- [8] H. Ryser, Combinatorial Mathematics, Carus Mathematical Monograph, 1963.
- [9] H. Sachs, Uber selbskomplementare Graphen, Publ. Math. Debrecen 9 (1962) 270-288.