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In this paper it is shown, using the Sieve formula. that (he number of apen chains of lenpth k.
k=S, in a sell-complementary (s.c.) graph is always even. As a carollary, it follows that the
number of hamillonian chains in & 5.c. graph of order p> 5 is even, a result proved carlier by
Camion. Further, the minimum number and the maximum number of open chains of length 3 in
s.c. graphs of order p ate determined, and the s.c. graphs of order p which attain these bounds
are characterized.

1. Introduction and definitions

All graphs considered in this paper are finite. undirected and have neither loops
nor multiple edges. For a graph G, the symbols V(G) and E(G) denote the vertex
set and the edge set of G, respectively. A graph G is said to be self-
complementary (abbreviated, s.c.) if G is isomorphic with its complement G. It is
well known that if G is a s.c. graph of order p. then p=0 or 1 (mod 4). For most
of the known results on s.c. graphs refer to Rao [S]. For a labeled graph G and
an unlabeled graph H, let H(G) be the number of nonidentical labeled subgraphs
of G isomorphic to H. Denote by C,. P, the cycle and open chain, of length k.
respectively. Note that C, has k vertices and P, has k + 1 vertices. P, is referred to
as an open k-chain.

Let p=4N or 4N+1; and P$(p) (respectively, P¥*(p)) be the minimum
{respectively, maximum) value of P,(G) where G is a s.c. graph of order p.

Clapham [2), (see also Camion [1]) proved that every s.c. graph has a hamilto-
nian chain.

Camion [1] proved, using the Sieve formula, that if p>$ then the number of
hamiltonian chains in a s.c. graph G of order p. that is P,_,(G). is even. In
Section 1 using similar methods as in Camion (1), we determine the value of
P\(G) and prove that P,(G) is even if and only if cither p=4N, or p=4N+1 but
N is even, and also prove that P,(G) is even whenever k5. In Section 2, we
determine the values of Pi(p), and P¥*(p) and characterize the s.c. graphs of
order p which attain these bounds.
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All sequences considered in this paper have positive terms and ate in nonin-
creasing order. A sequence 7 =(d,,....d,) of length p is said 10 be potentially
s.c. sequence if there is at least one graph G with degree sequence m, referred to
as a realization of , which is a s.c. grapb. A sequence 7 with even sum is suitable
if either p =4N, and

(1) dy+dyq=p-1, fori=1,...,2N,
() dy=d., lori=2,4,...,2N.

or p=4N+1, for some N, and

(1) di+dy=p~1, fori=1,...,2N+1,
d=d.,, fori=2,4,...,2N.
If = is suitable with p=4N, then
m=(ay,a),82 @z ..., 0y, an;
p-1-ayp-l-an....p=1-0p-1-ayp-1-a,p-1-a),
and therefore 7 can be actually specified by the sequence m*=(a,,...,ay).
called the reduced sequence of . Conversely, given a sequence #*=(a,....,ay)
such that p—1=a,2 - -+ = ay 22N, then the corresponding full suitable sequence
w of n* is determined when p=4N. If p=4N+1 and  is a suitable sequence.
then
w=(a),a,..., 4y aw 2N,
p-l-ay,p-1-apm...,p~1-a,p-1-a,)
and 7" =(a,,..., ay) is calied the reduced sequence of 7 and = is catled the full
suitable sequence of m*. A sequence m° is reduced-graphic if the sequence 7 is
graphic.
We need the following special graph G...(p) in Section 3.
For p=4N, let G,,4N)=G, be the graph with V(G)=AUB where
A={1,3,....4N-1}, B={2,4,...,4N}
and A is complete, B is independent in G and for i€ A, je B, (i, j)€ E(G) if and
only if one of the following holds: (i) j=1+1, (i) j=i+3 and i =3 {mod 4), (iii)
j>1+4.
For p=4N+1, let G, (4N+1)=H, be the graph with V(H)=
AUBU{4N +1), and the subgraph induced on A UB is identical with G_,,(4N)
and (4N +1,i)e E(H) if and only if i€ A.

Note that the degree seq of Gou(p), d d by ee(p) is the full
suitable sequence of (p—2,p—4,...,2N+e), where p=4N+e and e =0 or 1.

2. The value of P,(G) and the parity of P,(G), k>4

In this section we determine the exact value of P,(G) and the parity of P, (G).
k4 where G is a s.c. graph, by applying the Sieve formula [8, p. 19). To this end
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define, for 0 <r<|E(G)|=q(G) and subsets U, of E(G) with |U,|=r; W,(U,) to
e the number of nonidentical cycles of length i containing the edges of U, of the
Iabeled K, the complete graph of order p, and let

Wi =1 w(u), 2.0)

where the summation is to be taken over all subsets U, of E(G) with {U,|=r. For
r=0, define W,(0)=C(K,). Then by the Sieve formula (8, p. 19], we have

Gl6)= GUK,)= Wi(1)+ W,(2)+ - -+ +(= 1y Wi(i), @.n
where p is the order of G and i 2 3. Notice that
W(i=1)="P(G), (2.2)
WiH=G(G), 2.3
S
C)=5; (') i=3. (2.4)

It is clear from (2.4) that
G(K;)=0(mod2), ifi=5 (2.5)
Now we are ready to obtain the values of P(G) and C,(G) as functions of p
and the degree sequence of G.

Theorem 2.1, If G is a s.c. graph with degree sequence m=(d,,...,d,), then
P3(G)=p,(m) and C5(G)=cy(m) where

)
2¢5(m) = |-i| (;‘) _%P—_Z)' (2.68)
and further
Py(G)-2(p-5)Cy(G)=2 (p(p—zl)l4)+w2—2(p;—5)_3 (:) (2.6b)

In particular, all s.c. graphs with the same degree sequence have the same number
of open 3-chains, and have the same number of triangles.

Proof. By (2.1), (2.2) and (2.3) and the fact that G,(G) = G(G) we have
Py(G) = W,(3) = Cy(K,)— W (1) + W,(2). 2.7

Clearly, W,(1)=4(G)-(p—2)(p—3)=6(3), since for a s.c. graph G or order p,
q(G)=p(p—1)/4. To calculate W,(2), divide the set of all unordered pairs of
distinct edges of G into two classes, the first (resp. second) class consisting of the
pairs of adjacent (resp. nonadjacent) edges of G. The contribution to W,(2) by
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the first (resp. second) class is p—3 (resp. 2) for each pair and hence is
N d, q(G)\_ 4

0-9E() (e2('7)2L ()
Substituting these values of W,(1), W,(2) and the value of Cy(K,) from (1.4) in
(2.7) we have that Py(G) = py(m). Since Cy(K,)=(5). W,(1)=p{p - 1)(p —2)/4 and
Wy(2)=F7-, (3, it follows from (2.1) that C4(G)=c¢,(n) of (2.6a) and then it is
easy to verify that (2.6b) holds.

Corollary 2.2
Py(G)=[p/d}mod 2). (2.8

Proof. Since p=4N or 4N +1, it is enough. by (2.6), to prove that
(p-9) t (d') =( (mod 2).
i=1 2
This is trivial if p=4N+1 and in the case p =4N since, by a result of Ringel (7).
Sachs [9] the number of vertices, in a s.c. graph of order 4N, whose degree is
equal to a given value is even, the corollary follows.
We now state and prove the main lemma of this section.
Lemma 2.3, If G is a s.c. graph of order p and i =5, then
P_(G)m (p—i+1)P,_,(G)(mod 2). (29
Prool. From (2.1), (2.2) and (2.3) and the fact that C;(G)= G(G) it follows that
P (G)=[W,(1)+ W, (2)+: -+ + W,(i ~2)] (mod 2). (2100

We first prove that

W (i-2)m(p—i+1)P,_,(G) (mod 2) (2.11)
and then show that
W()m0(mod2), ifl<jgi-2, (2.12)

To prove these, consider a subset U, of E(G) with |Uj|=j. We may suppos¢
that W,(U)>0. Let s be the number of components in the subgraph of G
induced by these j edges of U, on the vertices incident to at least one edge of U,

First suppose that j=i-2, then s=1 or 2. If s=1, then these i -2 edges form
an open chain of length i -2 and W,(U)=p—i+1; whereas if s =2, then these
two components, which necessarily have to be open chains, together account for i
vertices and therefore W;(U,)=2. Thus (2.11) holds.
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Next suppose that 1=/ <i—2. We first prove that W,(U;)= 0 (mod 2). Let I be
the number of vertices of G incident with at least one edge of U, Clearly 1<i. If
=i, then since j<i—2, we have that s>2 and in this case it is clear that

W(U)=(s— 142" ~1)= 0 (mod 2).
If 1=i-1, then these s>2 components have together exacily i - 1 vertices and
Wi(U)=512"""(p—i+1)m0(mod 2).

Therefore we may assume that (<i-2. Let C be any cycle of length i of K,
containing the edges of U, Throughout the following we fix this j and U;. Label
the vertices of C by two marks as follows: label a vertex with a blue mark if it is
an end vertex of some edge of U, and a red mark otherwise. Call 2 maxima!
subchain of C of like terms (cither all blue or all red) a run of C. For k vertex
disjoint open chains, p, =(a,,...,a,), #2=(by,. .. b ) oo =ley, .06 in
a complete graph, define p,+p,+ - +p, 1o be the cycle
[C-TIRUOY Y ODY S Y §

Let now By, R,, By, R;,...,B,, Ry be the runs in C in that order so that
C=B,+R,+B,+Ry+ -+ +B, +R,. Clearly k=522. For two cycles C, C" of
length i of K, each containing U, define C to be semi-equivalent to C' if the
subgraph on V(C) with edges |J}., (E(B,)U E(R,)) is identical with the subgraph
on V(C) with edges U}., (E(B})UE(R)), where B, R|,....B. R, are the runs
of C'sothat C'=B}+R|+ - +B,+R.; in particular V(C)= V(C'). Clearly this
is an equivalence relation on the nonidentical cycles of length i containing U, of
the graph K. We shall prove that each equivalence class contains an even number
of cycies. Any cycle D, semi-equivalent to C consists of the edges of the runs B,
R, of C, 1=i=<s, and the other edges of D, have one end vertex a blue vertex
and the other end a red vertex of C. Thus

D,=B,+Ri+B}+R\+ + +BI+R] @13

where B, =B, and j,,...,j, is a permutation of 2,.. ., Sty i, is a permuta-
tion of 1,...,8; and if R, is the open chain (a,....,a,), then R} =R, or the
chain (a,,...,a,) and B} has similar meaning. Note that R¥ = R, if |V(R)|=1.
Further the chain

D,=B,+RN+B},+RY+ - + B} +R},

is semi-equivalent to D, if and only if (iy,...,i)=(i}....t) (or.r i f)=
(f3-..,j), RE=R, if and only if R};=R,, and B} =B, if and only if B}.=8,,
Now we can count the number of el in the equival class ining C.
Note that each B, has at least two vertices, where as R, may consist of a single
vertex for some values of k. Let s, be the number of R, having exactly one vertex
and 5, =s—s,. If s =1, then since 1 <i -2 it follows that s, = 1, and the number of
cycles of length i semi-equivalent to C is equal to 2. Thus we may assume that
122, Then in (2.13) there are 25, +s, choices for R:'. and 2(s— 1) choices for B:.
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and so on. These imply by what has been said already that the number of cycles
semi-equivalent to C is equal to (2s,+$,)-2(s— 1)+t {for some integer 1) which is
congruent to 0 (mod 2). Thus (2.12) holds and then by (2.11) and (2.10), the proof
of the lemma is complete.

Corollary 2.4, If G is a s.c. graph of order p, then PJ(G) is even if and only if
p=4N; or p=4N+1 but N is even.

Proof. By Lemma 2.3, we have
P,(G)=(p-4)Py(G) (mod 2)
and the corollary follows from Corollary 2.2.

Now we are ready to prove the main theorem of vhis section which generalizes a
result of Camion,

Theorem 2.5. If G is a s.c. graph and k> S, then P,(G) is even.

Proof. Since P;(G)m (p—5)P,(G) (mod 2) it follows by Corollary 2.4 that Py(G)
is even. Then by Lemma 2.3 we by induction have that P,(G) is even for every
k>, and this completes the proof.

Corollary 2.6. (Camion [1]) The number of hamiltonian chains in a s.c. graph of
order p>$S is even.

3. Determination of the values of PYp) and P¥(p)

In this section we determine the values of P3(p), P¥*(p), where p=4N or
4N+1 and characterize s.c. graphs which attain these bounds. To this end let

wo-gh )l 1)

where  is a potentially s.c. sequence of length p, N =[p/4] and 7 =(b,,.... by).
Further let

- so(m), if p=4N, 02
s(m)= .
.ta('lr)+(22N), if p=d4N+1,

Then, by Theorem 2.1, for any s.c. graph G of order p, we have
Py(G)=f(p)+(p—S)s(m), (3.3)
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where
ftp)=2 ("(’ ; ”’4)—3 (Z) and 7 =n(G).

Therefore, to find the value of P3(p) (respectively, P£*(p)) it is enough to
minimize (respectively, maximize) the value of so(1r) over all the degree sequences
 of s.c. graphs of order p.

First we determine the value of P3(p) and characterize s.c. graphs G of order p
with Py(G) = P3(p):

Lemma 3.1 If p=4N or 4N+, then

f(p)+(p—SHBN -8N2+2N), if p=4N,

Pp= [f(p)+(p-5)(sN’-2N’—N). ifp=aN+1.

(3.4
Further, if G is a s.c. graph of order p, then Py(G)=P3(p) if and only if the degree
sequence of G is the full suitable sequence of #* =(2N,...,2N).

Proof. By (3.1), (3.2) and (3.3) it is enough to minimize the value of sy{w) over all
potentially s.c. sequences m of length p. The ith term of so{w) is equal to
bi(26,-2p+2)+(p—1)p-2);
and since b, 3 2N, it follows that the minimum value of this term is 2N(4N-2p +
2)+(p—1)(p-2). Thus the minimum value of s,(w) is 8N’ -8N*+2N if p=4N,
and is 8N>-4N? if p=4N+1. Also if  is the full suitable scquence of
a*=(2N....,2N) then these minimum values are attained. Thus by (3.2) and
(3.3), the cquation (3.4) holds. Further, it is clear that if Py(G)= P}(p). then the
degree sequence of G is the full suitable sequence of #*=(2N,...,2N).

To determine the value of P*(p) we need the following characterization of
potentially s.c. sequences.

Lemma 3.2 (Clapham [3]). A sequence w of length p is potentially s.c. if and only
if  is suitable and its reduced sequence w* = (b,, . .., by) satisfies the in-equalities

Ybh<rp-1-r), foreveryr,1Sr&N (3.5)
=1
where N =(p/4).
From the above lemma we shall deduce the following

Lemma 3.3, Let 7 be a potentially s.c. sequence of length p=4N or 4N+ 1, and,
w*=(by....,bn). Suppose that equality holds in (3.5) for some ro. If 1Gr, <N,
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then b, *b, ., +2; if ry= N and strict inequality holds in (3.5) for r=N -1, then
by >2N.

Proof. If ro=1, then b, =p—2 and b, +b,<2p -6. Therefore b, < p—4. Thus we
may assume that 1 <r,<N. From (3.5) for r, and ro— 1, we have, after subtrac-
tion, that b, > p~2r,: whereas (3.5) for r,+ 1 and r, yield, again after subtraction,
the inequality b, +1<p—2r,—2, and this implies that b, > b, ,,+2. If ry= N,
then from (3.5) for N and N~ and the hypothesis, we have that by > p - 2N and
therefore by > 2N.

To characterize s.c. graphs G of order p with Py(G)=P}*(p) we need the
following

Lemma 3.4. The only realization of the sequence m,,(p) which is the full suitable
sequence of (p—2,p—4,...,2N+c) wherep=4N+£ and € =0 or | is the graph
GraslP)-

Proof. By Lemma 3.1, the sequence m,,..(p) is graphic. We prove that =,,,,(p) is
unigraphic by induction on N. For N=1, 7. (p)=(2, 2,1, 1)or (3,3,2, 1. 1)
both of which are unigraphic. Assume that the assertion holds for N-1, and
Toae(P) be as in the statement with N=2. Let H be any realization of n,,,(p)=
(d,,....d;) with V(H)={u,,....u,}, and dy(i;)=d, 1<i<p. Then the vertex,
u,(respectively, uy) is necessarily joined to all the other vertices except one vertex
v say, (respectively, w). If v =w, then the degree of every vertex of H is at least
2. Thus v# w. This implies that u,, u, are joined to all the vertices u,# u, w. Let
S ={u,, iy, v, w). Then dy(v)=dy(w)=1, and both u,,u, are joined to every
vertex in V—§. Now the degree sequence m(H,) where H, is the subgraph of H
induced on V-§ is equal to m,(p—4). Therefore, by the inductive hypothesis,
H,=G,,.(p—4). Now by the structure of H described above it follows that
H=G_,,(p) completing the proof.

Lemma 3.5. If m=m.,(p), then

%’(16N‘—15N+2). if p=4N,
stm)= (36)
g(32N‘—6N—5). ifp=4N+1.

Proot. If 7 =m_(p), then
™ =(p-2,p-4,...,2N+s),

where p=4N+¢ and ¢ =0 or 1. Now substituting these values of b, in s(w) of
(3.2) and simplifying using values of £i., i and If%, i? it can be seen that s() is
equal to the value mentioned in (3.6) and this completes the proof.
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Theorem 3.5. If p=4N or 4N+, then

I(P)+(P-5)Z;1(IGN’-15N+2). if p=4N,

PH(p)= N (&%)
f(p)+(p-5)3(32N‘~6N-5). if p=4N+1.

Further, if G is a s.c. graph of order p with P5(G)= P$*(p), then G =G, (p).

Proof. Let G be a s.c. graph of order p with P,(G)=P¥*(p), and let # = (G).
a*=(by.....by). We first prove that = =m,,,(p). For this it is enough to show,
that equality holds in (3.5) for every r, 1 € r < N. Suppose that this is not true for
some rq and let m be the smallest and M be the largest integers with msr, s M
such that for every r with m < r < M strict inequality holds in (3.5). We prove that
there is 2 s.c. graph H of order p with P\(H)> P\(G).

We consider two cases.

Case 1. lsmsM<N.

Then by the maximality of M, we have that for r = M + 1 equality holds in (3.5),
and also if m> 1, then by the minimality of M, we have that for r=m~1,
equality holds in (3.5). These imply by Lemma 3.3 that by, ,=by,.,+2, if
M=N-2, and by>2N if M=N-1, further if m> 1, then b, _, 3 b, +2.

Define a new sequence (b}, ..., by) as lollows:

b ifi#mand i#M+1,
bi=qb+1 ifi=m,
b=1 if i=M+1.

Now by what had been said above it lollows that by > - « - & by, 2N. Further, for
any r, 1<r<N, we have that

ib. ifr<morr>M,

(‘)_"_Ih)n it mereM

Since =* satisfies (3.5), it follows by the definition of m and M that n¥=
(..., bn) satishies (3.5) and hence is reduced-graphic. Let =, be the full
suitable sequence of . Then by Lemma 3.2 m, is a potentially s.c. sequence of
length p. Let H be a s.c. graph with degree sequence m,. Note that #¥=
w*+8, -8y, and m <M, where 8, is the vector of length N in which the m-th
coordinate is 1 and the rest are zero.

It is easy to check that

1(m) = 5(7) = 2bp = 2bpg 01 232
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Therefore, by (3.3), Py(H)> Py(G), a contradiction.
Case 2. 1«am&M=N.

Define a new sequence ¥ =(b},...,bk) as follows
b, ifi#m,
bi=
b+t fi=m

Then, by Lemma 3.3, it follows that b} >+ -+ = by >2N and by the definition of
m and M we have that w} is rcduced-graphic. Let m, be the full suitable
sequence of Y. Then mr, is a potentially s.c. sequence of length p. Let H be as.c.
graph with degree sequence ;. Note that af =a*+8_. It is easy to check that

s(m)-s(m=2b,,—p+2=1.
Therefore, by (3.3), Py(H)> Py(G), a contradiction.
Thus we have proved that the degree sequence of G is T, (p). Therefore by

Lemma 3.5, we have that PF*(p)=Py(G) equals the value asserted in (3.7).
Further, by Lemma 3.4, we have that G = G,,.(p).

From (2.6a), (2.6b) and Theorem 3.5 we have the following:

Theorem 3.6, If CF*(p) is the maximum number of triangles in s.c. graphs of order
p, then

%,(N—l)(BN-l). if p=4N,
)=

Ny N )
(ZN)+3(N—1)(3N-1). if p=4N+1.

Further, if G is a s.c. graph of order p with Cy(G)=C¥*(p). then G = G ..(p).

We conclude this paper with the [ollowing unsolved problems:

Find the maximum, the minimum number of hamiltonian chains, hamiltonian
cycles in s.c. graphs of order p.

For an elegant characterization of s.c. graphs with hamiltonian cycles refer to
Rao [6].

Acdlmowledgement

Many thanks are due to the referee for useful comments and suggestions.

References

[1] P. Camion, chains in self- graphs, Cahiors Centre Etudes Recherche
Opér. 17 (1975) 173-184.



Open chains in self-complementary graphs 30

[2] C.RJ. Clapham, arcs in self- y graphs, Discreic M icy 8 (1974)
251-255.

(3] C.RJ. Clapham, Potentially self-complementary degree sequences, J. Combinstorial Theory 20B
(1976) 75-79.

[4) F. Harary, Graph Theory (Addison Wesley, Reading, MA, 1972).

[5) S.B. Rao. Explored, semi-explored and unexplored lerritories in the structure theory of self-
complementary graphs and digraphs, in: A. Ramachandra Rao. Ed.. Procceding Symposium on
Graph Theory ISI, 1976, IS] Lecture Notes Series, No. 4 (MacMillan, Indis, 1979) 10-35.

6] S.B. Rao, Solution of the iltonien problem for sell- I y graphs, J. Ce
Theory, Series B (in print).

[7) G. Ringel, Selbstkomplementare Graphen, Arch. Math. 14 (1963) 354-358.

(8] H. Ryser. Combi ics, Carus i A 1963.

[9] H. Sachs, Uber selbskomplementare Graphen, Publ. Math, Debrecen 9 (1962) 270-288.




	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301

