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For Xi. -+, Xa independent real valued random variables and for a e
[0, 1]. let Fi(x) = aP[X; < x] +{l — a)P[X; & x] and Y;(x) = alix;cn +
(1 - oy Y5z where /4 is the indicator function of the set 4. For num-
bers wi, we, -+ -, wa, let Dn = SUps.a Maxysa | SV wiYi(x) — Fix))l. We
will obtain an exponential bound for P[D. 2 a] and a rate for almost sure
convergence of D,. When w; = | the bound and the rale become, respec-
tively, 4aexp{—2((a*/n) — 1)} and O((n log m1).

1. Introduction. Let X|, ..., X, be independent real valued random variables.
If X,, ---, X, are identically distributed, Theorem 2 of Kiefer (1961) leads to

(n sup, | T7 (Nx;en — PIX, < x])] = O((nloglog n)!) w.p. 1,
where (and hereinafter) indicator of a set A is denoted by /, and convergence is
wrt n — oo. The analogue of (1) in the non-identically distributed case would be
) SUPIZE Uirsen — PX; < X]| = O((nloglog mt) w.p. 1,
but this is unproved. Neither of the two proofs given in Kiefer (1961) for (1)

works for (2). Nor are we able to supply a proof here. However, using a simple
proof, we derive a result whose specialization shows that, if for a ¢ [0, 1]

Fi(x) = aP[X; < x] + (1 — @PLX; S x]

and
Yix) = aljyicn + (1 ~ )iy
then
(3)  sup,,maxyg, |SF (Y,(x) — Fy(x)| = O((nlogn)) w.p. 1.
THEOREM. Let wy, ..., w, be any numbers. Set ||w,|| = 37 |w,| and ||w,||,} =
S w; For any sequence {a,, n = 1} for which a, = ||w,||, and
wlg lwll _af @ Y
@ zr o e 2 (2 () )} < =
we have
(5) D, = sup,  maxyg, [TV wlY,(x) — Fy(x))| = O(a,) w.p. 1.

2. Proof of Theorem. We assume, without loss of generality, that w; = 0
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(since, otherwise, we can always work with w,* and w,~ separately). In view
of the Borel-Cantelli lemma and our assumption (4) we complete the proof of
the theorem by proving the following lemma.

LeEMMA. Foreachn 2 1 and for any a = ||w,]l,,

4al|w,| a !
(6) P[D, =z a] < —1 "~ ex {—2 —l).
. 1< S (=2 () -t
PROOF OF THE LEMMA. Foreach j =1, ...,n, let w/ = wj/||w]|, and ¥ =

Trw/. SetH, = 3rw/F, H* = Yrw/Y;and § = sup, , max, . |H,y*(x) —
H,(x)|. Thus, to complete the proof of the lemma, it suffices to show that, with
M = af||w.[|.,

) P[S 2 M] < AWMexp(—2(M* — 1)) .

Let A = max,, (Hy* — H,) and S* = sup, , A(x). The remark following
(2.17) of Hoeffding (1963) page 17, and Theorem 2 therein, applied to random
variables w/Y with @ = | give
(8) P[A(x—) = 7] < exp(—27%) VxeR and V5 >0.

Fix (temporarily) 0 < y < M and partition R into k intervals with endpoints
—00 =X, < X, < --- < X, = oo such that H (x;,.x)) <y forj=1,---, k.
Since 0 < H,(-) < W, we can (and do) lake k < W7y~ + 1. Since Hy(x;_,, x;) <
H (x4-1, X;) < v for N < n, using the monotonicity of H, and H,*, we get
9 SUPx,»_,<.<.,~ A(X) = mast»(HN*(xi—') - HN(XJ—1+))

S A(x=) 47
Note that the rhs of (9) is independent of a.

Now observe that A(x) < A(x+) vV A(x—) < sup, ., sup, A(x), where A is any
dense subset of R. Therefore, $* = sup, , A(x) £ sup, max, g, SUP, . cacs; B(X)
and from (9), (8) and A(x,—) = 0, we have
(10) PIS* 2 M) s P(U' [A(x;—) 2 M — 1))

< Wrttexp(—2M — 7)) .
Since the lhs of (10) is independent of 7, substituting y on the rhs of (10) by
7o = M(1 — (1 — M-*}) and noting that 7, < 2M, we get from (10)

(11) P[S* =2 M} < 2WMexp(—2(M* — 1)).

Let S- be defined by interchanging H,* and #, in §*. Then, since $-(X,) =
$+(—X,) where X, = (X, - - -, X,), the arguments used for (11) lead to
(12) P[S- = M] < rhs of (11).

Since § = §* v S-, the proof of (7) (and hence of the lemma) is complete by
(11) and (12).

3. Remarks. Consideration of certain nonparametric test-statistics is the
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motivation of the present consideration of weighted empiricals, (e.g., the weights
w,, - -+, w, could be regression constants of certain nonparametric test statistics
based on X, -.., X,). The result of the theorem with « = 0 and w; =1 is
needed in another paper (Singh (1974)) on nonparametric estimation of deriva-
tives of average of densities.

The choice, 7,, of 7 in the proof of the lemma is made so that y,~'exp(—2M —
70)") is quite close to the inf, . ., 77" exp(—2(M — 7)), and the resulting bound
is not a complicated oné. This choice is suggested by Professor James F.
Hannan.

When in the theorem a, = ||w,||,{1 + log (n|w,.|})}} where |w,| = ||w.]|/]]w.l],
and njw, |} = I, then, since by the ¢, inequality (Loéve (1963) page 155) {I +
log (njw.|H}t < 1 + {log (n|w,[})}}, (4) reduces to a simple condition

“) Iy n7{log (n[w, Y} < oo .

Thus, as a special case of the theorem we have: If n|w,[} = 1 for all sufficiently
large n, and if (4) holds, then

&) D, = O(||w.lli{1 + log (n|w.|h)}}) w.p. 1.

In particular, with w, = 1, (5*) gives (3).

It is proved by Dvoretzky, Kiefer and Wolfowitz (1956) (and later generalized
to the multivariate case by Kiefer and Wolfowitz (1958)) that there is a universal
constant ¢ such that, for all r =2 0, P[lhs (1) = r] < ¢ exp(— 2r/n). This bound
is stronger than the one obtained for the larger probability in (6) (with w; = 1),
(omission of the condition that a = ||w,||, in the lemma here results in a slight
change in the bound). The question of whether an inequality of the type
Pllhs (2) 2 r] < ¢, exp(—c,r*/n), where ¢, ¢, are universal constants, holds and
that whether lhs of (2) is O((n log log n)}) w.p. 1 are still open. The affirmative
answers of these questions, however, may not lead to similar results concerning
the lhs of (3) (and hence of (5)), because (3) is a special case of (5) and the lhs
of (3) could be much larger than that of (2).
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