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Existence of measurable selectors and
parametrizations for G,-valued multifunctions

by

V. V. Srivatsa (Calcutta)

Abstract. In this paper we establish the existence of le sclectors and
or G-valued multifunctions. Examples are given to show that certain reasonable conjectures
fre falkse.

1. Introduction. In recent articles, Srivastava (6] and Sarbadhikari and Sriva-
stava {5] have established the following facts about measurable G,-valued mulii-
functions:

THeoReM 1.1, Ler T and X be Polish spaces and A a countably generated sub
a-field of the Borel o-field By on T. Suppose F: T — X is u multifunction such that
F is A-measurable, Gr(F)e A® By and F(1) is a G, in X for each t€T. Then
there is an A-measurable selecior for F, that is, there is an A-meusurable function
J: T—= X such that fit) € FU) for each teT.

THeorem |.2. Let T, X, A, F satisfy the hypotheses of Theorent V.1. Then there
is a map f: TxE = X such that for each 1€ T, the map fi1..) is continuous, open
and onto F(1) and for cach o € L. f(., 6) is A-measuruble, where £ is the space of
irrationals.

In (S} Sarbadhikari and Srivastava raised a i ding the
of Theorem 1.2, viz., whether all multifunctions induced by maps[ TxL~Xol
the above kind necessarily satisfy the hypotheses of Theorem 1.1.

Theorems 1.1 and 1.2 hold. as has been shown by the above-mentioned authors,
even when T is an analytic set and A any sub o-field of B;. This is easily deduced
from the above theorems. The present article is motivated by the question whether
the above results can be extended to the case where (T, A) is an arbitrary measur-
able space or the even more general (1 k of lhe K ki-Ryll-Nardzewski
selection theorem. Debs [1] has already idered this problem. By i
thal the graph of the multifunction is of 2 certain form, chs was able to csmbhsh
Theorem 1.1 in the set-up of K ki and Ryll-Nardzewski. To this article
we prove the parametrization theorem (Theorem 1.2) i this situation and settle
the question raised in [5]. mentioned above, in the negative by means of an example.
We then go on 1o seitle another natural question, arising therefrom, by means of
another example.
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The paper is organized as follows: Section 2 is devoted to definitions and
notation. In Section 3 we prove Theorem 1.1 in the set-up of Maitra and Rao {4
It should be mentioned that though this is only a slight extension of Debs' result,
our proof is simpler and more transparent than that of Debs. In Section 4 we prove
the main result, the plmpeuiution theorem. In Section S we give our counter-
examples.

The author is indebted to S. M. Srivastava and A. Malitra for helpful dis-
cussions and suggestions.

2. Definitions and notation. We denote by N the set of all natural numbeu
and S will denote the set of all finite seq of natural bers, includi
empty sequence e. For k € N, S, will be the set of all elementsof S of length k For
s€ S, |s| will denote the length of s and if I<]s] is a natural number, 5, will denote
the ith coordinate of s and, for n € N, sn will denote the catenation of s and n. If
X is a non-empty set then a function A: S —» P(X) from § into the power set of X is
called a system of sets in X and will usually be denoted by {A(s), s€ S} or simply
by {A(s)}. A system of sets {4(s)} in X is called regular if A(sm)S A(s) for each s€ §
and ne N. We put X = N*, Endowed with the product of discrete topologies on
NIt ah ph of the irrationals. For g € X and i € N, o, will denote
the ith coordinate of o and ofi will denote the finite sequence (0, 4y, ..., 0, );
hete, if / = 0, off will just be the empty sequence. If se S then the set {o € 2: 0, = ;
for I<|s} will be denoted by Z,. In particular, X, = .

Let T and X be non-empty sets and ACP(T). A multifunction F: T — X is
2 function whose domain is T and whose values are non-empty subsets of X. For
EcX, we denote by F~'(E) the set {eT: F(1) n E & B}. We denote by Gr(F)
the set {(1, x) e Tx X: x € F()}, and call it the graph of F. A function f: T —
is called a selector for Fif f(t)e F(t), te T. For ASP(T), A° will denote the set
{AST: A°e A} and the smallest countably additive (resp. countably multiplicative)
family of subsets of T containing A will be denoted by 4, (resp., by 4,). If 4 and B
are g-fields on 7 and X respectively, then A(X) B will denote the product o-field
on Tx X. Further if L and M are families of subsets of T and X respectively, then
L x M denotes the family {AxB: Ac L and Be M}). If WSTx X then, for teT,
W' is the set {x: (1,x) & W} and will be called the section of W at .

Now suppose T is a non-empty set and A< P(T). Suppose X and Y are metric
spaces. A multifunction F: T — X is called A-measurable if F~'(V)e A for every
open V<X, Similarly, a point map f: T - X is A-measurable if F~(V)¢€ 4 for
every open set V<X, A map f: Tx Y- X is called a Carathéodory map if, for
cach re7, the map f(t,.): Y= X is continuous and the map f{.,)): T~ X is
A-measurable for each y e Y. A Carathéodory map is said to be open (resp. closed)
if, for each 1 €7, f(¢,U) is relatively open (resp. closed) in the range of f{1,.) for
cach open (resp. closed) set US Y. If F: T — X is a multifunction, a Carathéodory
mep f: Tx Y- X is said to induce F if F(r) = f{t, Y) for each 1eT.

We say L P(T) satisfies the weak reduction principle (and we writc WRP(L))
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if, for any sequence of sets L,, Ly, ... from L such that {J L, = T, we can find
A=)

®
disjoint L}, Ly,.... from L such that LicL, for each and Y Lj=T.
=1

A field on T is a family of subsets of T containing & and closed under finite
ions and ) We remark here that it is well known that,
if L is a field, then WRP(L .). For ES X, cIE or E will denote the closure of E,
and 8(E) will denote the diameter of E.
For terminology not defined we refer the reader to Kuratowski [2).

3. A Selection Theorem. Before proceeding to prove our results, we first note
that, as every Polish space can be embedded in a compact metric space in which
it is automatically a G,, we will find it sufficient to prove our theorems when X is
a compact metric space. This assumption will be made, when required, without
loss of generality.

We now fix some notation. In what follows, X will denote a Polish space with
& metric 4 such that 3(X)<1. The topology on X will be denoted by U. We fix
a base {V,: ne N} for X such that ¥, = X and ¥, # @ for each n. Also, in what
follows, T will be a non-empty set and L a family of subsets of T conteining @ and T,
closed under finite intersections and countable unions and such that, moreover,
WRP(L). In the sequel, F: T— X will be an L-measurable multifunction such

©
that Gr(F)e(Lx U)gs. Set G = Gr(F) and write G = nG,. where G,2G,,,
and G, = U(L,_xU,_) with LeL and U,, ellnm;l

The followmg is well known:

Loow 3.1, Let f,: T— X, ne N, be a sequence of L ble functi
If f, converges uniformly to a function f: T — X, then [ is L-measurable.

The next lemma is implicit in [1].

LesMA 3.2 Let X be compact. If HETx X is such that He(Lx U),, then
or any closed set CS X, the set {te T: CSH'} belongs to L.

L]
Proof. Let H= J (L, xU,), where L,e L and U, e U. Then, as C is com-
(L]

pact, {teT: CEH'} = U(L, n..nL,), whore the union runs over all finite
sequences (ny, ..., m) such that' CeU, v U, v.. VU, As L is closed under
finite intersections and countable unions, the proof is complete.

Loow 3.3. Let {T()} and {U(s)} be regular systems of sets belonging to L
and U respectively such that:

M) T =T,

() T = U T(on) for each ses,
[ L}

(ili) 5,28, sk t, [s| = |t) » T@NAT() =B,
(iv) (U(s))<2™M for each 3,
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™ T(s) #0 = Uls) # 2.
Put My = U (TE)xcl(U(s))) and M = (\ My. Then M is the graph of an
T sy LERY
L-measurable function f: T— X. Further, if each T(s)e(LnL"), then [ is
(L n LY),-measurable.

Proof. Let 1€ T. Then there is a unique o € I such that ¢ e T(o|n) for each .
Then cl(U(oln)) is a d ing seq of ply closed sets of diameters

tending to zero. We put f(r) to be the unique point belonging to () cl(U(vln)).
A=l

Then M is the graph of f.

We shall now define a of L ble functions f;: T — X which
converge uniformly to /. First, for each se S such that U(s) # &, choose and fix
a point x, e cl(U(s)). Define f;: T~ X by fi(r) = x,, where s is the unique clement
of S of length k such that 1€ T(s). (Observe that in this situation ¢/(s) # @.) It
is easily checked that f, is L-measurable and that f; - f uniformly. Lemma 3.1
now shows that f is L-measurable. This completes the proof.

Lemmas 3.1, 3.2 and 3.3 hold even without the assumption that the weak
reduction principle holds for L.

LEMMA 3.4, There exist systems {T(s)} and {U(s)} of sets in T and X, respectively.
Satisfying conditions (-(v) of Lemma 3.3 and further satisfying:

(vi) {U)EG, for each se S, and teT(s),

(vii) US) nG' # B for each 1eT(s),

(viiiy T(sye L n L° for each se S.

We assume here that X Is compact.

Proof. The construction is by induction on k= [s]. For k =0, put T(e) = T
and U(e) = X. Suppose T(s), U(s) bave been defined for s € §,. We will now define
T(sn), U(sn), for all n>0. Define

T {t: VanF(r) £ B} n {1 VasGlyi),

A"G) = if Ve U(s) and 3(V..)<2, =1

& otherwise.
As Fis L-measurable, {t: ¥, n F(f) # &) € L. By Lemma 3.2, X being compact,
we have, {1: V.€ G, )€ L. Finally, as L is closed under finite intorsections,
it follows that A™(s) e L, for each m>0. Further, by the induction hypothesis and
(vii), we have |) A™(s) = T(s). As WRP(L), we obtain a disjoint family
0
{B"(5): m»0}cL
such that for each m>0, B™(s)SA"(s) and U B(s) = T(s). Since L is closed
under countable unions, it is easy to see Ihn B'(J)el.nl' for each m>0. Put

T(sn) = B*s), n20
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end
Voo ifT(n) £,
Ul =
e {ﬂ otherwise .

It is easily seen that {T(s)} and {U(s)) as defined above satisfy conditions (i)-(viii).
This completes the proof of the lemma.

We now prove the main theorem of this section. This is essentially the theorem
in 1)

THEOREM 3.1. Let X be a Polish space, T a non-empty set and L a finitely multi-
plicative, countably additive family of subsets of T. containing @ and T and satisfying
WRP(L). Let F: T~ X be an L-measurable multifunction with Gr(F)e (Lx U),,,
U being the topology of X. Then F has an (L n L°),-measurable selector,

Proof. As remarked earlier, we can, without loss of generality, take X to
be compact. Use Lemma 3.4 to obtain systems {T(s)} and {Uls)} satisfying con-
ditions (i){viii). By Lemma 3.3 we obtain an (L n L°),-measurable function
f: T— X, whose graph is M. From condition (vi) it follows that M<G. Thus,
fis an (L n L°),-measurable selector for F. The theorem is proved.

Remark 3.1. If M is a ficld on T and we take L = M, in the above, then as
remarked in Section 2, we have WRP(L). Thus we obtain the theorem in (1], Notice
that while in [1] M has been 1aken 10 be a clan, that is. a family closed under finite
intersections and pairwise differences, no greater level of generality has really been
attained. For the multifunction F being L-measurable and non-empty set valued,
F-"{X)=TeL = M,. Consequently, M now being closed under differences, we
can write T = U M. (M, } being a pairwise disjoint family of subsets of 7. Further.

M restricted loach M, isa field. Thus our theorem applies to F restricted to M,, for
every n32 1. The theorem in [1] is an immediate consequence. To see that Theorem 1.1
follows we have to show that Gr(F) may be written as () ) (T x Uy} with

i3l
Tum €4 and U,, open in X. But this is implicit in the proof of Lemma 3.8 of [6].
The only additional observation one need make is the following:
Let T be a Polish space. and X a compact metric space. Let B be a Borel set
with open sections contained in Tx X. Then B = |J (B,x U,), with B,, n21, Borel

=l
in T and {U,, n>1}, form a base for X. This, X being compact, is an easy con-
sequence of the well-known theorem of Kunugui-Novikov.
Remark 3.2, If Tis a Polish space, for L we can take the family of sets of the
additive class a, for any ordinal a>0, or the family of cosnalytic sets to obtain
selectors of the respective classes, and in the last case, a Borel measurable selector.

4. A representation theorem. In this section 7 and X will be as before. However,
in addition to the assumptions made in Section 3, we will further assume that
each ¥, appears in (¥,: ne N} infinitely often. We will also require that L = M,,
where M is a field on T. Such an L will satisfy the earlier conditions, as observed



28 V. V. Srivatsa

in Remark 3.1. We will take F, G, Ly, Uy, n, m>1 as before. We first prove
a lemma:

LeMMA 4.1. Let X be compact. For each s€ S, there is a map p(.,3): T~ N
such that:

(a) p(.,3) is L- mmmmble,

(b) 3V, ,,)< Jor s€ S, and teT,

(©) Vs, -I—G:u 0 Vo 120,
(d) F) N Vyyp # 9,

(e) F) 0 VyrnS EJOVm.-)'

(1) F(YEV pra-
Proof. The proof will be by induction on |s|. Define p(r, ) = 0. Suppose
pit, s) has been defined for s € S,. We shall now define p(1, sn), for n30. Put

1
a3, if B{VJ)F,
Re={{1eT: F)n V, # O, V¥, and V.SG,\},
1
it o)< 7

By Lemma 3.2, {1: V.cGi. }eL.

Now, {t: VaSV¥psa} = U{t: p(t,5) = 1}, the union running over all / such
that V,cV,. As p(.,s) is L-measurable, we have {1: V,cV,, ) eL As Fis
L-measurable, it follows that R_e L. Let R, = U Quis Qe M. Let i = (m,. 1)

be a 11 mapping from N outo Nx N. Put P, = Q_,,EMObtervema(UR. =T

Further, as the base {V,} has been chosen so that each V, appears mﬁnnely often,
it follows that, for each fixed 1€ 7, {m: 1€ R,} is infinite, and consequently that
{I: teP)) is infinite. Define p(t, sn) = m,, where i is the (n+[)st integer j such
that f€ P). As {i: 1€ P} is infinite, p(1, sn) is defined on the whole of T for each
n20.
Now,
P(t,50) = m e @)[m=m and 1e P, and (Vj<N)(r¢P)).

As each Pye M and M is a field, it follows that {¢: p(, s0) = m) € M, = L. Further,
for n 21,

p(tymy=m e @)[m; = m and 1€ P, and
Ghi<h<.<f<h(teP n..nP,
and (V) (J<i and j¢{ji, 0 ls} =+ 14 B))].
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Here again the expression within square brackets is a Boolean combination of
the P/'s. Thus, as M is a field. we have

{1: plt, sy =m}eM, = L.
Consequently, p(., sn) is L-measurable for each n>0. One easily checks that the
system of functions p(., 5) as defined above satisfies conditions (a)~(F). This proves
the lemma.

We now prove the representation theorem:

THEOREM 4.1. Let X be a Polish space, T a non-empty set and M a field on T.
PutL = M,.Let F: T = X be an L-measurable multifunction with Ge(F) € (L x U),,,
U being the 1opology of X. Then there exists a map [ Tx E — X satisfying:

(i) For each 1€T, the map f(1,): £ - X is continuous, open and onto F(1)
there f(1,U) is relatively open in F(1) for each U open in %),

(ii) For each g € L, the map (., 0): T~ X.is L-measurable.

Proof. As before, without loss of generality we take X to be compact. By
Lemma 4.1, we have a system p(.,s) of functions satisfying conditions (a)(f).

Define f: TxZ - X by:

ft.ad= N V,(n..mg na.
k=1 k=)

©
It is easy to see that, for each ¢ and o, the intersection [} Vy, o0y reduces to
k=l

a singleton. The map f is therefore well-defined. Fix o € L. For each s€ S,, define

T(s) = {teT: p(t, all) = 55, p(t, 0]2) = 5, ... p(t, 01k) = 53¢}
and U(s) = V,,_,, if T(s) # @ and U(s) = @, otherwise. Observe that, so defined,
U(s) = ¥y, oy for t&T(s). Then, as is easily checked, {T(s)} and {U(s)} are
systems satisfying conditions (i}<(vii) of Lemmas 3.3 and 3.4. It follows that

N\ U(T(s)x U(s)), where the inner union runs through all s€&S,, is the graph of
A=

an L-measurable selector for F, say f,: T — X (by Lemma 3.3 and condition (vi)
of Lemma 3.4). Also, note that f,(r) = f{(t, 0). Thus, for each fixed s€ %, (., 0)
is an L-measurable function on T into X and f(s,0)€ F(1). Now fix 1eT. It
follows from (b), (c) and (e) that the map f(1,.): £ - X is continuous and open
onto F(t). The proof of the theorem is complete.

Remark 4.1. The above proof does not go through under the weaker es-
swnptions on the family L made in Theorem 3.1. Indeed, Lemma 4.1 makes es-
sentia) use of the fact that L is of the type M,, where M is a field on 7.

Remark 4.2. If we take T 1o be metric and L to be the family of sets of ad-
ditive class «, where a>0, we obtain a representation of the above type, where
the maps f(., g), for fixed o€ %, are of class a.
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Remark 4.3. By the observations made in Remark 3.}, Theorem 1.2 follows
from Theorem 4.1.

Remark 4.4. In [5}, S. M. Srivastava and H. Sarbadhikari have proved that
the multifunctions of the type considered in Theorem 1.2 are of the so-called
‘Souslin type’, i.¢., they prove the following: Let T, X, F, A be as in Theorem 1.2,
Then there is an A-measurable closed valued multifunction H: T— I and
a continuous, open map /: £ — X such that F(t) = f(H(1)). We shall content ourselves
with the observation that the same result holds in the more general set-up of
Theorem 4.1, with the closed valued multifunction H: T - X now being L-measur-
able. The proof in [5) goes through mutatis mutandis.

S, Counterexamples. Let T, X be Polish spaces, and let A, F, By be as in The-
orem I.1. As seen above, F is induced by a continuous, open Carathéodory map
J:TxE — X. Conversely, suppose a multifunction F: T — X is induced by a continu-
ous, open Carathéodory map f: TxZ — X. Then, as observed in (5], Fis
A-measurable. Moreover, by a theorem of Hausdorfl, continuous. open images
of absolute Gj sets are absolute G,'s. It follows that F(r) is a G, in X for each 1€ T,
The question has been posed in [5] as to whether in this situation Gr(F) is necessarily
in A® By. An answer in the affirmative would provide a complete characterization
of multifunctions of the type specified in Theorem 1.1 in terms of such Carathéodory
maps. We remark here that in |7] it has been shown that such multifunctions are
indeed induced by Carathéodory maps where the maps f(1, .), for each reT. are
continuous and closed on X onto F(r), and, further, that such closed Carathéedory
maps characterize these multifunctions. We show below, by means of an example,
that the answer to the above question is in the negative. We then show, by means
of another example, that if in Theorem 1.2, Gr(F) is assumed to be analytic, F need
not even admit a measurable selector.

ExampLe 1. Let 7, X be uncountable Polish spaces. Let A be an analytic,
non-Borel subset of T. Fix x, € X such that x, is not an isolated point. Let GETx X
be defined by:

G = (Ax{xo) u (Tx(X—{x,}).

Then G is an analytic, non-Borel subset of Tx X. Consider the multifunction
F: T— X defined by:
F(n)=G'

Then

(i) As each F(1) is dense in X, F is By-measurable, where By is the Borel
o-field on T.

(i) Each F(1) is & Gy in X.

(iii) Gr(F) = G is an analytic, non-Bore! subset of T'x X.
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We will now show that F is induced by a i open Carathéodory
map f: Tx L = X providing us with our ple. We will do so by obtain-
ing & subsct H of Tx XxI salisfying:

(a) For each teT, (X—{xo))xEcH'.

() Hisa G, in TxXxE

(¢) mrux(H) = G, where iy, x is the projection map on 7x X x L onto Tx X.

Suppose such an H has been obtained. Consider the multifunction K: T — Xx £
given by:

Kiy=H'.

Then by (a), X is By-measurable. By (b), Kis G;-valued and Gr(K) = H e B;® By ,;.
Thus X satisfies the hypotheses of Thearem 1.2. There is therefore a Carathéodory
map h: TxZ — Xx I inducing K such that for each fixed 1€ T, the map A(1,.):
I - XxZ is continuous and open onto X(t). Look at the map /: TxE - X de-
fined by:

S, 0) = ny{h(1, 0))

where my is the projection onto X.

Then, clearly, for each fixed o € £, if & is Br-measurable, so is f(., 0): T - X.
For fixed 1€ T, h(t, .) is continuous, open and onto H'. As m is continuous and (c)
holds, we have

Sit,.): £ X is continuous and onto F(r).

Let U= U xUySXxZ, with U, open in X and U, open in X be a basic open
set in Xx L. Fix (e T. Then n(U n H') is ceither U, or U;—{x,}. In either case,
dU n H'Y) is open in X. 1t follows that zy is open on the range of A(r,.). As
h(r,.): £— XxZ is an open map, it follows that f=my0h: £ X is an open
map. Thus, f as defined above gives the required representation. Finally, it remains
to find H. As A is analyticin 7, there is a closed subset C of Tx I such that n{C) = A.
Let

H = (Tx(X={x)x E) U {({{t. x,0) e Tx Xx I: (1,0) € Cand x = xo}).

This H satisfies conditions (a), (b) and (¢).

As we have found that the range under such open Carathéodory maps can
be an analytic non-Borel set, the question that naturally arises is whether any
measurable multifunction, taking G,-values, whose graph is analytic is induced
by such a Carathéodory map. We show below that such a multifunction necd not
cven admit a measurable selector.

ExampLe 2. Let CcIxExI be a coanalytic subset of IxEx I which is
universal for all coanalytic subsets of Zx Z. To fix ideas, we essume that sections
of C obtained by fixing the first coordinate run through all the coanalytic subsets
of ZxE. Consider D= {(x,7)eIxI: (x,X,2)€C}. Then D is a coanalytic
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subset of £x Z. Apply the Kondo Uniformization theorem for coanalytic sets to
obtain a coanalytic uniformization for D, i.e., get a coanalytic set B D such that
B is a singleton whenever D* % @, Let A = (XxI)—B. Then,

(i) A is an analytic subset of Ix L.

(ii) For each xe I, A* ={ye Z: (x,y)€ A} is cither Z or £ minus a point.

Define a multifunction F: £ — I by F(x) = A*. Then,

(a) As each A is dense in X, Fis B;-measurable, By being the Borel o-field
on Z.

(b) For each x € X, F(x) is open in Z.

(c) Gr(F) = A is analytic in IxZ,
However, F admits no B;-measurable selector. Indeed, 4 admits no coanalytic
uniformization, a fortiori, no Borel uniformization. For if not, let £EGA be a co-
analytic subset of X I such that E* is a singleton for each x € X. As C is universa|
for the coanalytic subsets of Zx £ there is x* € I such that E = C*, Now, there
is 2 unique y* € £ such that (x*, y*)eE. 1t follows that D™ = y* and con-
sequently, that (x®, y*)e B. But EcA. So (x* )*)e A = IxZ—B, which leads
to a contradiction.

Added in proof: Theorem 1.1 has been extended to an arbitrary measurable space
(7, A) by the author in his doctoral dissertation: Measurable sets in product spaces and their
paramesrizations, Indian Statistical Institute, Cakcutta 1981.
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