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1. The problem. We consider sequential probability ratio tests based on
ranks for the two sample problem. The hypothescs used in computing the
probability ratio are that the two sampled populations are identical and that
one of the sampled populutions has a distribution function which is a specified
power of the other sumpled distribution function. It is shown that this procedure
terminates with probability 1 and the moments of the stopping time are finite.
These resuits apply to whatever populations are actually sampled.

The problem to be discussed was presented by Robert Berk in a letter of
July, 1964 to I. Richard Savage. It has also appeared in the work of E. A. Parent
(1965) with which J. Sethuraman was familiar. Again, it appears in an appro-
priate theoretical context in Hall, Wijsman and Ghosh (1965, p. 594). Miss
Sarla D. Merchant considered the problem in her unpublished Florida State
University Masters’ thesis of 1962.

To be specific we are concerned with the following situation: (X, Y)),
(X2, Y3), --- are independently and identically distributed bivariate random
variables with a joint distribution H (-, -) which has continuous marginal dis-
tributions F(-) and G(-). We wish to test the null hypothesis Ho: X, ¥ are
independent, and G = F against the alternative hypothesis H, : X, Y are independ-
enl, and G = F* where A > 0, A = 1 is a known constant. At the nth state of
experimentation the available information is the ranks of (Y, -+, ¥,.) among
(Xy, -+, Xa, Yy, --+, Y,). We shall use a sequential probability-ratio test
based on ranks (see Savage and Savage (1965)). If the distribution of (X, Y)
is H(-, -) with marginals F(-) and G(-) and S(4, H) = S(4, F, G) = 0 (for
definition, see (12)) it is shown in Section 3 (Theorem 3) that this sequential
test terminates with probability 1 and that the moment generating function of
the required sample size is finite.

2. Notations, test procedure, preliminaries and lemmas. When the experi-
ment has proceeded up to the nth stage we have observed (X, Y1), (X:, Ya),
+, (X., Y,). Let the combined sample be denoted by Z,, 23, * + + , 23, and the
ordered combined sample by Zn1, Znz, - - , Zazn . Let Fa(-) and Ga(-) be the
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empirical distribution function of X, , X3, -« ,X.and ¥;,Y,, -+, Y., respec-

tively.

The information that will be retained and used for sequential testing is the
ranks 8; < 8 < -+ < 8, of the ordered Y,, ¥;, ---, Y, among the combined
sample. We note that the statistic (a1, &, -+, 8.) is equivalent to (Gu(Z..),
f=1,::-,2n) which in turn is equivalent to (F.(Z.:), Ga(Z.),t =1, -, 2n),

The sequential probability-ratio test based on ranks for testing H, against H,
depends on L.(A, Fy ,G.) = Pg,(81, -+ ,8,)/Pu,(8:1, - -+ , 8,) and can be writ-

ten in the form

Take one more observation if a S L,(A, F,,G.) S b
(1) accept Hyif L.(A,F.,G.) <a

reject Hoif L.(A, Fa,Ga) > b

n=12 ...
where 0 < a < 1 < b are suitable constants (independent of n) and
(2) Lu(A, F., G,) = A”(20) /0" IT (Fu(Zu) + AGu(Z.0))-

Relation (2) can be easily deduced from Savage (1956, Corollary 7.a.1).
The number of stages before termination, N, is defined by

kif asSL,Sb for n=1,.--- ,k— 1 and
3) L.>b or La<a for n=k
woif a 5L, Sb foreveryn.

Let
(4) nS, = log L.(A, F., G,).
From (2) we have
(6) Se =log44 — 2 — T, 4+ O((logn)/n)

where T = n~' 201" log (Fu(Zai) + AGa(Za)).

From here assume that (X, Y) has a joint distribution H( -, -) with continuous
marginal distributions F(-) and G(-). Before formulating the basic Lemma 1,
we find the auxiliary results (8), (9) and (10).

Let
(8) (n) = sup, [Fu(z) — F(z)|, (n) = sup.|Ga(z) — G(2)],

2(n) = (n) + AGy(n).
From Theorem 1 of Sethuraman (19684), for each 8 > 0 there is & p1(3) < 1 such
that

) Pia(n) = 8 S p"(3)
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for sufficiently large =, 7 = 1, 2. Hence for large n,
(8) Pifi(n) 2 &} S Plth(n) 2 8/(1 + A)} + PidAQ(n) = A5/(1 + A)}
= 20"/(1 + A)) = "

where g2 < 1.

Now, let W, , W,, - - - , W, be independent and identically distributed random
variables with mean E(W,) and finite moment generating function in a neighbor-
hood of 0. For each ¢ > 0 and sufficiently large n,

9) PH[(Wy+ -+ + Wa)/n) — E(W))| 2 ¢ S ps'(e)

where pa(¢) < 1 as can be scen from Theorem 1 of Chernoff (1952). In (9) let
W. = log (1 + (8/U.:}) where U, has the uniform distribution on {0, 1]. The
moment generating function of W, is finite for § > Oand ¢ < I and E(W,) -0
as 5 — 0. Thus from (9), given ¢ > 0 we can find § such that for sufficiently largen
(10) Pl T log (1 + (8/U)) 2 ¢ < "

where p, < 1.
In analogy to the random variables S, and T, (see Equation 5) we define the
parameters

(11) T(A, H) = T(A, F, G) = [log (F(z) + AG(z))(dF(z) + dG(z))

and

(12) S(A,H) = S(A, F,G) = log4A — 2 — T(A, F, G).
LeMMA 1. Given ¢ > 0, there exists p < 1 such that, for sufficiently large n
(13) P{IT, — T(A, F,G)] 2 3¢} < 5"
PRroor.

T = 17" 321" l0g (Fo(Zn) + AG(Z.0))
= 7' 221 log (F.(Z:) + AG.(Z0))
(14) =n"' " log (F(Z)) + AG(Z.))
+ 27 0" log {1 + (Fa(Zs) — F(Z:)) + A(Ga(Z:) — G(Z)Y/
[F(Z:) + AG(Z)])
= T,.“) + T,.“) (say)

Let W, = log (F(X:) + AG(X.)) + log (F(Y:) + AG(Y:)). Then W,
has a finite moment generating function and E(W,) = T(4, F, G). Thus, from
(9), for sufficiently large n

(15) PlIT." — T(A,F,®)| 2 ¢] S po"

Now,
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(18) |7.°) S n7 X0 log (1 + [@(n)/(F(Z)) + AG(Z2.)}

s n' Xl log (1 + (8(n)/F(X)))

+ 07 Tl log [1 + (A(n)/AG(Y:))]
where Q(n) is defined in (8). Choose 4 so that (10) holds. From (10) and (8)
Pin~' 31 log [1 + (Q(n)/F(X))] 2 ¢

= Pla(n) = &}
an + P 2T log [1 + (2(n)/F(X))] 2 ¢ 9n) < &)

S+ Pln7 Zllog [l 4 (8/F(X))] 2 ¢

S+ S,
for sufficiently large n and ps < 1. Arguing in a similar fashion for the second
term on the right hand side of (16) we have for sufficiently large n,
(18) P{IT."] = 2¢} = o,

where ps < 1. Combining (15) and (18) we can find p < 1 such that (13) is
true.
Lemma 2. Given ¢ > 0, we can find p < 1 such that for sufficiently large n

(19) P{|S. — S(A,F,G)] 2 3¢ = o
Proor. This follows immediately from (5) and Lemma 1.

3. Main theorem and discussion.

TaeoreM 3. Let S(A, F, G) » 0. Then

(i) P(N > n) < p" for syfficiently large n, and some p < 1.

(i) PN < w) = L

(ili) E(6™) < o for tin some inlerval (— », 8) whered > 0.

Proor. (ii) and (iii) are immediate from (i) which we shall prove. We
first note that

(20) P(N > n) s Pla < L. < b}.
Next, if S(4, F, G) » 0,
(21) P(a < L, < b) = P[(log a)/n < S. < (log b)/n}

= P”S- - S(A’ F, G)l > ‘l

for sufficiently large n. Then (20), (21), and Lemma 2 establish (i).
Lemma 4 lists some properties of the parameter S(A, F, @), defined in (12).
In this lemma k will stand for a cumulative distribution function on [0, 1].
Lmnoua 4. (i) S(1, F,G) = 0.
(ii) S(A, F, h(F)) ia independent of F.
(iii) S(4,F,G) = S(1/A, G, F).
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(iv) S(A, F, F) < 0for A = 1.

(v)* S(A, F,F*) > 0for 4 » 1.

(vi) S(4, F, F®) is strictly increasing in B for A > 1.

(vii) For each A, there 18 a unique B(A), lying belween 1 and A, salisfying
the equation
(22) S(A, F, F®) = 0.

Further B(A) = 1/B(1/A).

Proor. (i), (ii), (iii) and (iv) follow directly from (12), the definition of
S(A, F, G). Now,

S(A,F,F°) = log44 — 2 — (1/A) [ilog (t + ALY d(t + AL®)
(23) ~(1 = (1/4)) [slog (t + AL®) dt
= log44 — 2 — (1/A)((1 + A) log (1 + A) — (1 + 4)]
— (1 = (1/4)) [slog (¢ + Af") dt.
For A > 1, (23) shows that S(A, F, F?) is a strictly increasing function in B,
establishing (vi). Equation (23) can be further simplified by writing log (¢t + A¢®)
= log ¢t + log (1 + A¢"') and integrating by parts.
(24) S(4,F, F*) = —2log §(4' + 47
+ (A~ 1)(B—1) [a(I/A + &%) dy,
and
(25) S(A,F, F*) = [3[[(A — 1)(B — 1)/4 + £7°]
— (4 — 1)Y/(44 + (4 — 1)) de.
When 4 = B < 1, the integrand in the right hand side of (25) is > 0 for ¢ in
(0, 1) and thus S(4, F, F*) > 0 for A < 1. From (ii) and (iii), S(4, F, F*) =
S(A, F'"*, F) = 8(1/A, F, F'*). Hence S(4, F, F*) > 0 for A > 1 also. This
establishes (v). Now, (vii) follows from all the above.

4. Discussion. Theorem 3 establishes the sure termination of the sequential
procedure (1) under very general conditions including Hy and H, . The restric-
tion S(A, F, G) = 0 does not appear necessary to insure termination. It should
be noted that Theorem 3 includes the possibility that the pair of random vari-
ables X, and Y, are dependent. It is strongly conjectured that sure termination
will occur whenever X, and ¥, are independent.

Although a hypothesis such as H, often occurs in nonparametric work, the

hypothesis H, i3 special. At the present time we are not able to do other interest-
ing special cases. The general case would be Hy. :F(-) # G(-). The general case

t We are grateful to Dr. E. A. Parent for supplying us & proof of this property.
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ia perhaps no more difficult than the interesting special case of two normal popula-
tions with common variances and a known difference in means. The methods of
this paper would certainly apply to situations with other sampling patterns,
for example, not taking the same number of observations from cach population
at each stage or taking more than one obscrvation from each population at some
stages.

Lemma 2 appears to be the first “large deviation’ result for a problem involv-
ing ranks. Since the random variable S, has a more involved structure than those
considered by Chernoff and Savage (1958), it would appear possible to prove
large deviation results for their problem. Furthermore, it would be very useful
to obtain the exact rates of exponential convergence to zero in such situations
rather than mere upper bounds as in Lemma 2.

TABLE 1
Pairs (A, B) salisfying (22)

4 B A B A B
0.0567 0.2500 0.44 0.6635 0.72 0.8486
0.0856 0.2667 0.46 0.6710 0.73 0.8544
0.0764 0.2867 0.48 0.6784 0.74 0.8602
0.0898 0.3077 0.47 0.6857 0.75 0.8660
0.1067 0.3333 0.48 0.6030 0.76 0.8718
0.1284 0.3636 0.49 0.7001 0.77 0.8775
0.1570 0.4000 0.50 0.7072 0.78 0.8832
0.1953 0.4444 0.51 0.7142 0.79 0.8888

0.52 0.7212 0.80 0.8944
0.26 0.5016 0.53 0.7281 0.81 0.9000
0.28 0.5113 0.54 0.7349 0.82 0.9055
0.27 0.5209 0.55 0.7417 0.83 0.9111
0.28 0.5303 0.56 0.7484 0.84 0.9166
0.29 0.5398 0.57 0.7550 0.85 0.9220
0.30 0.5487 0.58 0.7616 0.86 0.9274
0.31 0.5577 0.59 0.7681 0.87 0.9327
0.32 0.5665 0.60 0.7746 0.88 0.0381
0.33 0.5752 0.61 0.7810 0.89 0.9434
0.34 0.5837 0.62 0.7874 0.90 0.9487
0.36 0.5022 0.63 0.7937 0.01 0.9540
0.36 0.60056 0.84 0.8000 0.92 0.9592
0.37 0.6088 0.85 0.8062 0.93 0.9644
0.38 0.6160 0.66 0.8124 0.94 0.9606
0.39 0.6249 0.67 0.8185 0.95 0.9747
0.40 0.6328 0.68 0.8246 0.98 0.9798
0.41 0.8406 0.69 0.8307 0.97 0.9849
0.42 0.6484 0.70 0.8367 0.98 0.9899
0.43 0.6560 0.71 0.8426 0.99 0.9950

an‘n: There is a possible error of .0001 in the value of A among the first eight values
l(!nd in the value of B in the remaining. If (4, B) satisfies (22), (1/4, 1/B) also satisfies
22).
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We now give a table of pairs (4, B) satisfying (22) of (vii) of Lemma 4.
It is for this puir that Theorem 3 docs not establish sure termination. The table
was computed by Mr. P. DeYoung of Florida State University and Mr. Dale
Borglum of Stanford University.
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