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A MODEL FOR AF ALGEBRAS AND A REPRESENTATION
OF THE JONES PROJECTIONS

V. S. SUNDER

A model for approximately finite-di ional (henceforth abbreviated to
AF) algebras is developed here, which may be looked upon as a matrix-theoretic/
wrgodic theoretic allernative to the mode! developed in [4). One advantage of
s model is thal it leads directly o a certain Borel space and a canonical (tail-)
wuivalence relation on it, which underlies the GNS representalion of the AF-algebra
agociated with any trace on the algebra that factors through the conditional expec-
1auon onto an appropriate Cartan subalgebra.

As an application of this model. we construct a representation of a sequence
1e,} of projections in the hyperfinite IT, factor which satisfy: e e, =ee, if It — nl > 1,
eny1€a = T€,. and tr(we,) = 1trw forany word win 1. ey,...,e,., — where t~1is
the Perron-eigenvalue of a primitive (in the sense of the Perron-Frobenius theory)
matrix of the form AA" where A is a non-negative matrix with non-negative integral
entrses. Such sequences were encountered in 1) and it is the author’s belief that the
mode! developed here could be used in the problem of constructing subfactors of the
hyperfinite TI, factor with trivial relative commulant and index 7=' with r as above,
We obtain explicit formulae for these projections by applying our model 1o the AF-al-
gbra resulting from an application of what Jones calls his “basic conslruction™ 10
2 pair of finite-dimensional C*-algebras with inclusion matrix A.

We begin by reviewing some basic facts concerning inclusions of finite-dimen-
sional C*-algebras. and by setling up the notation to be used in the sequel. Recall
that any finite-dimensional C*-algebra N is of the form NxN, @ N, @ ... & N,.
where N, = M(n,. C): the veclor o = (... ..n,) will be called the dimension-veclor
of N— it is uniquely determined. up to a permutation, by N.If N e M is a unital
mclusion of finite-dimensional C*-algebras, where M x M, @ ... @ M,,. with
My = M(m,,C), the associated inclusion matrix A = AY is the nxm Z,-valued
matrix with A,; = the number of simple components of a simple M-module when
siewed as an N-module. (The matrix A is uniquely determined once onc haschosen
ordered partitions of unity {py. ....p,} and {q,,...q,,) inlo minimal central projec-
uons of N and M respectively.) The dimension vectors n and m then satisfy m = A'n.
where A' denotes the transpose of 4.
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With M as above, there is a bijective correspondence between faithful iraces
on M and strictly positive vectors t in R™, the correspondence being given
by t,® ... ®Y) = );l,un\',. where ‘Ir' denoles the usual trace on mainx

algebras. It is known that if a trace t on M corresponds 1o tin RT and if a trace
@ on N corresponds to s in R" . then t/N = ¢ iff s = At.

REMARK. For the reader who is more comfortable with Bratteli diagrams, y
might be worth mentioning that as far as book-keeping devices go. the Braueh
diagram and the inclusion matrices are equivalent; thus, for instance, if M, denotes
the group algebra of the symmelric group S, on » lelters, the Iwo equivalent ways
of describing the tower A, ¢ M, & My & M, are:

Diagram Marrices
/’\C\’ 0o
Ko™ b
Q( \.// \}.{:[j] 011

\ 11000

. @j\/. [ e Bl

{Note that multiple cdges in the diagram would correspond to entrics farger
than one in th= inclusion matrices.)

.

Suppose now that M, ¢ M. c ... (a) is an g chain of finite-di
sional C*-algebras. Once and for all, choose and fix ordered partitions of umty
{pm, .‘..p‘.:’} into minima) central projections in Af,. With respect to this choie.
let us wrile A for the inclusion malrix A:‘:“. Thus, if m™ is the dimension
vector of M, — so that dim p{”#, = (m}™)! — we have mt" ¥ = (A=Vm, and
in pariicular, m, and {A":n > 1} determine m' for all n > 1.

Our aim, now, shall be to start with the data {n", AV, A%, ..} and buill
a model of an AF-algebra with this data. Specifically, we assume that the fol-
lowing data are given:

(a) a sequence {v,in > |} of positive integers;

(b) a vector m'™in Rt wilh positive integral coordinates; and

(c) a sequence {A'":n > 1}, where, A is a non-zero v, X ¥,,, Malrix with
non-negative integral entrics.
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As above, we have a sequence {m'™:n > 1} defined by m™ =
A" A Ata-1y ' miv The starting point for the corstruction is a certain
gpace of sequences.

DrrNiTIoN |, With v, 4™, m" as above, define the associated sequence-space
0 ss follows:

z_ (1l (m)
0=0€27: ) S S v L Say < ml) ) St S 4, foralln > 1),

siere, of course, Z, =1!1.2,...}. %

The following nolation will be handy in the future: for any subset / of Z, ,
we shall write o ~ &, for the restriction mapping Q — Z’; thus. for instance,
= as o, ) we shall also write a,) for ayy . 2y 08 2py 0 2 fOF @1, ooy
iz, 10r 2, 0. We shall write ©; for the set {a; : o € Q}. One last bilof notation :
rf‘,l‘.”ﬂl,} is a partition of Z,,and if y, € Q,,, for 1 < i <k, and if there exists
1€ 2 such that %, = for 1 < i < k, we shall write 7,¢ ... »y, for a.

Now consider the (in general, non-separable) Hilber1 space /4Q) of square-
mmable functions on €2 dencte the canonical orthonormal basis by {Z,: f € Q}.
(Thus. {yla) = 0, ,. where & denoles the Kronecker symbol.) Each (bounded) oper-
Ao xon /*(R2) corresponds uniquely to its matrix ((x(.f))), ge 5. Where, of course,
) = (x§y. {,) for every aand fin Q.

Forn=1,2....,definc M, to be the set of operators v on /%Q) whose ma-
nces satisfy the following conditions:

(i) x(xp) =0 unless o, = fay: and
(ii) X(,8) = x(e’,f') whenever a, B, o, f’ € Q satisfy
Uop = Prans Qjow = I];‘_n- Uy =%y DA flo, = ﬂ-.:.p
In other words, x € M, iff there is a function Xy, 2., Q2 — C satisfying
0 x(@.p) = ‘Sllg,pﬂlg. Xan (%en. Bop) V. feQ

PROPOSITION 2. (a) Each M, is a finite-dimensional C*-algebra of operators:
(o) M, c M, for alln>1:
{c) if X" is an operator on /482), then x' € M, iff there exists a bounded meas-
sadle function xl,' 0t Quzn X2y = C such that
X(ap) = 5,,”, ) N {en Ben)  for all o feQ;
A if xeL(/MQ). and if n < m, then x€ Mg M, iff there exists a

funttion: X(zaom; : Qun,am X Qyanam — C such that

X, By = 5.,,,1. Fam V312 A Nlen2m) (@{2n,2my o Pranzm)
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Jor all a, B in Q; in particular, x € Z(M,) iff there exists a function X\em : Qg X Rpq~
— C such that

x@,B) =8¢ p Xien (@gefo)) VYV aBin Q2

(and consequently, Z(M,) is v,-dimensional );

(¢) for each n 2\ and 1 < j < v,, define projections p'" in ZIM ) by p'¥a. )=
= 6.,«5,.,”; then, {p\", ...,p\™} is a partition of | into minimal ceniral projec-
tions of M,:

(1) with respect 10 {p{™, ...,p"} and {p{"*", ... ,p"¥"), the inclusion

L] sl

matrix A:-'I is precisely the matrix A .
3

Proof. (a) & (b). Ttis clear from the definition that M, < M,,, and that M,
is a self-adjoint vector space of operators: to verify that M, is an algebra, if z = xj,
with x,y € M, and if a, f € Q, we have

(e, p) = ZDX(R, V¥ p) =

7€

= Z 5,“._,(:. 6,“.‘ Mse x:-)(‘z.]- Yoa)2u You) » ﬂm)=

yeQ

Xoafla)s You)) Youf{ Vonps Bow)s

“[1at(za
171 1y 0y )

notice now that the sum, although seeming to depend upon a;,,, actually does not,
since
Z /(Vm) = E f0),

YER: Yy =ayy,) (€0, 118, =2, )

for any function f defined on Q).

Finally, M, is finite-dimensional, since it has a finite basis given by {u, ,: . 7€
€ )y Vi) = ¥p)» Where
(2 u, (@) = 6%.,“. 67..") 6_":”

(¢) Let x" € L(/4Q)), and let {u,,:y,%x € By} be as in (2) above. Then,
or any a,f in Q, we have

(x'u, Na. B) =,§',Dx'(ﬂ. 0)8

) ) =
Youien 70m) Py

=3, X yha);
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{shthough the concatenation ysf,, may be inadmissible if yy, # Py, note that
Ihe right side is non-zero only when x = fy,. in which case, we have yy, = ¥y, =
= f,, and there is no problem). A similar computation shows that

(tyn X' ) = By X' (%0100, ).

Hence, x' € M, iff x" commutes with u_, for each y, x in Q,,, satisfying ¥, = ¥p,
shich happens iff B,Hr,v'(xoa,,,. B = 6.‘,u|.\"(u.yoﬂ,g,) for every w, f in Q2
and for every y, x as above: it is not very hard now to deduce (c).

{d) and (¢) are fairly casy consequences of (c).

() With {p": ) €i<v,) and {py""D: 1 € j < v,,,} as in (e}, note that
.(‘:--l (i, /) is the maximum number of pairwise orthogonal non-zero projections in

Mooy N MEPY Y 2L s easily seen (using the description of M,., n M, given
by (d) ) that such a colection is given by {g,: 1 < k < A{}"}, where
9@ B) =8, 4815, 80s,, Sy, []
Let M, © M, < ... be as above, and let us write M, for U M,. We shall
denote by C the collection of operators in M,, which have a diagonal matrix
with respect to the canonical basis of /%(Q): thus, C = {x € Mg, : x(a, f) = d, y9(@)
for some bounded function ¢ on £2}. Tt is fairly clear that C is an abelian s-sub-
algebra of M, in fact, if we let C, =CnM,. then C, is a maximal abelian
(*-subalgebra of M, and there is a natural identification: C, =/®(Q,,). It is also
clear that the map E : M,, — C given by (Ex)(a, B) = 5, 5x(a,a) defines a conditional
expeciation of My, onto C.

PROPOSITOIN 3. (a) Ler ¢ be a state on M. Then there is a unique proba-
bility measure p defined on the Borel seis of Q such that

i}] olx) = Sx(a. o) du(a)  for all x in C.

(b) If p is a probability measure defined on the Borel sets of Q, there is a
wiique stale @ on M, which satisfies both (3) and the condition @ = ¢ E. (Thus,
equation (3) sets up a bijection between probability measures p on Q and states ¢
which satisfy @ = @oE.)

Proof. Since C, = /%(Q,,y), it follows — by considering ¢/C, — that for each n
there is @ unique probability measure g, defined on the subsets of 2, such that
o) = Sx,,,(y, y)dp,ty) for all x in C,. Since (¢/C,.\)/C, = @/C,, it follows

%
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that the of {n} is i in the sense that if Fc (.
and if F~ = {2 € Qyq): 23 € F) then py0 (F7) = p{F). Tt follows now from
Kolmogorov's istency th that there is a unique probability measure j

on @ such that for each n 21, and for every F < Q. p{{a € Q€ F) =
= (F): it follows easily that this g satisfies (3).

(b) Any probabitity measure p on 2 defines a state g on C via eguation (3);
ust let ¢ =@g-E. A

We shall now ider the GNS-rep ion n, faled with 2 state o
on M,, which satisfies ¢ = ¢:E. Let p be the probability measure on @ which
associated wilh ¢ as in Proposition 3. We shall sce that n(M,,)"" may be naturally
identificd with the groupoid-von Neumann algebra associated with (R. u”), where R
is the “tail-cquivalence relation™ on 2 and i~ is a measure on R oblained using j
and counling measure on the orbits.

To be precise, let us define

R={feQxQ:3n> | such that ap,, = .}

Clearly R defines an equivalence relationon @ which is Borel — in fact, R is an
F, subspace of the Polish space 2 X Q. Let p° be the measure defined on the
Borel subsets of R by

1 F) 'S‘,;b 1 48, 2)) dpta).

(Here and clsewhere, the symbol |, will denote the indicator- or characteristic
function of F. Notice that since R-cquivalence classes are countable, there are no
bility problems.) The #~ is a positive a-finite measure. since R
is exhausted by the increasing sequence (F,} of sels of finile measure. given by
Fo=lafeR o, = ﬂ(:-‘w
For each x in M, denole by n{x) the function defincd on R by nixXa.f) =
= (5 &,)- 1t follows from the definition of M, in lerms of matrix-entries thal
if x€ M,, then n(x) is supported on the sel F, defined in the last paragraph and
that n(x) is a bounded function. It is obvious that nis an injeclive linear map
from M., onlo # = niM,) < LYR.p"): hence ¥ becomes an associative ulgebr:
with involution, with respect to the operalions defined by (- )@, f) =
=Y & yn(y. B and {0l p) = &B.a for all ¢&,p in 4.
7

PROPOSITION 4. (8) ¥ is a lefi Hilber1 algebra with respeci to the abor
algebra structure and the inner product coming from LYR, p"):

(b) the equation n(x¥, = n(x)'¢, & € LR, 1), defines a representation n of M,
in LR, pi”);

(c) x(My)"* is the lefi von Neumann algebra of % ;
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(d) let &, be the unit vector given by §of2, B) = d,5: then &yis a cyclic and
sparating vector for m(M.,) such that @(x) = (n(x),, &) for all x in M, —
50 that this n Is the GNS rep ion of My iated with ¢.

Proof. Since ¢ = @oF, it follows that for x in Mo,
o) = (Ex) = Sx(u, o) dula)

ind consequently, for any x,y in M,

o) = Soﬁxxa. 2 due) = S (%, 7052 (5. 2) duia) =
o G‘En
= Sn(x)'m di” = (n(x). n(nd;

R

funher, for any x,y in M, and (a, f) € R,

(xyda. By = Y x@ )y B = (e, B)
ven: ameRrl
and hence nlxy) = n(x)n(y).

Finally, for each n > I, let &, be the o-algebra of seis in Q that is generated
by the maps {x = a;:1 < j < 2n}: then the Borel g-algebra F is generated by
U 7. so that also the Borel o-gigebra of Q@ x Q — which is just FRF —is
grerated by (U (F,®F,); it follows that if K is any Borel set in 2 x Q, the
teduced g-algebra (F @ F)/K (= {FNK: Fe F @ ¥}) is generated by | (¥F,®
@ F)IK: hence if F, = {{a, B) € R 1, = fra,} as before, it is not hard to deduce

that CJ LYF, (Fn ® F ) F,u") isdensein LYR, u” ). Notice now that if k =
maml

= max{m nl, then LXF, (¥, ® F)F,. ;") € n{M,) < ¥ and so & is dense in
R.17). (In fact, n(M)=LYF, (¥,® F)F,.1") and hence the above
double-union is exactly equal to #.)

All the assertions of the proposition may now be casily deduced from what
kzs been established so far.

We shall now consider traces on M, Suppose that ¢ is a faithful tracial
siate on M. Let t* be the positive vector in R’: which corresponds to the trace
o/M,; thus, if x€ M,

0] X) = 0, + Yot
@(x) yegn, Yea Nl (Y201 Y2u))

-
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this equation shows that ¢ = @y and 50 ¢ corresponds to a unique probabilsy
measure g as in Proposition 3. Further, we also know that t™ = g™y,

In the converse direction, it is clear that if {t™} is a sequence satisfying

(i) ™ is a strictly positive vector in R':, and

(i) AN = ¢ for all n >0,
then there is & uniquely defined faithful tracial state ¢ on M, such that ¢/H,
corresponds to t'"™. For c i of ref we include the following fairly
well-known result.

LEMMA S. Ler A be a v X v matrix with non-negative intcgral entries, and
such that A is primitive in the sense thal A* has strictly positive entries for soma
k > 1. Let M, be an AF-algebra for which A" = A for every n > 1. Then theo
is a unique tracial stale  on My,; further ¢ is faithful. In particular, (2 (M))" s
the hyperfinite 11, factor, where of course n, denotes the GNS representation of M,
associated with ¢.

Proof. Tt follows from the standard Perron-Frobenius theory that if 1 is the
spectral radius of A, there is a stricily positive vector ' in R" such that A" =
= Jt". Now define ¢ = 2'-" t"" and note that At"*"" = t" forall n. Letm" e 2’

be arbitrary. Assume that {' has been so normalised that ¥, t"'m!' =1 ths
J=l

ensures (hat the trace ¢ on M,, that is induced by the sequence {t™} is a stare
Further the strict positivity of " for each n implies that @ is faithful,
1f ¢ is another tracial state and if t™'™ is the vector in R, which corresponds
1o ¢ /M,. it follows that t“”’enA‘R"‘ since 7™ = A" for every o
>

and k: on the other hand, it is a consequence of the primitivity of A that () A*R" =
L0

= R,t'"; deduce that t™™ =at™ for some positive scalar a,; since A(™ =
="V and At™™ = """ conclude that all the &, are equal and therefore
¢~ = ¢. The fact that therc is a unique tracial slate on M, clearly implies that
n(M.)" is a factor of finite 1ype; the primitivity of A guarantees the infinite-dimen-
sionality of Af,, and the proof is complete. 74

Norr. (2) There is an obvious minor generalisation of the preceding lemma:
if M, is Euilt out of the data (m™, A™ :n > 1}, ifthe sequence {A™} is periodic -
ie, therc is a k > 1 such that v, = v, and Ak = A" for every n— and
if (AM... A% is primitive in the sense of the lemma, then M, admits a unique
tracial state which is automatically faithful. (Reason : M,, =) M, where M, =
= M,, and the lemma applies.)

(b) The argument in the lemma also shows how to construct AF-algebras whit
do not admit any faithful tracial state; for instance, Jet v, = 2 for every x and

let A™ = [:) :}, and note that( A"R% = R, [:) ] and so if a trace ¢ on M.
nxl
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wrmesponds to the sequence {t®}, then t* = [;"] for some a, > 0 for all n, so
bat ¢ is not faithful. B

Henceforth, we shall assume that:

(1) vaey = ¥ and vy, = vy for all a;

(i) A™*0 = 4 and A" = A' where A is a fixed v, X v, matrix with
wn-negative integral entries such that A" is primitive in the sense of the preceding
emma with Perron eigenvatue and eig denoted by A and 'V respectively:

(iif) t¥+1 = 1=tV and = = A%+ for all n;

(iv) @ is the faithful trace on M., associated with {t™};

(v) 2 is the associaled sequence space;

(vi) g is the measure on Q associated with @; and

(vii) Rcf2 x Q as in Proposition 4.

Hence, by the last lemma and Proposition 4, the left von Neumann algebra
wwociated with 4/ as in Proposition 4 is the hyperfinite I, factor. The reason for
ourinterest in this special case is that this is precisely the situation that is encountered

when one applies Jones” “basic construction™ to the inclusion M, ] M, In the
st proposition, we give explicit formulae for the resulting sequence {e, :n > 1}
of projections in M,, which satisfy the relations

eey=ep; if li—jl>1, and ee,e, =21, for all i

PROPOSITION 6. For n =1,2,...,define the elements e, in My, — by their
marrix-coefficients e,(a, p) — as follows:

o f) = a'ur‘ulé‘(n«"(uué‘v‘muJ‘uu‘-«'s’nu"-u X

X G2 i
fof course, it is assumed we that are in the Situation described by (i)—(vii) above)
then {e,} is a sequence of projections in M, which sarisfy the following :
(a) ege, =epen if Im—n) > I;
(b) ety si8a =2, ¥ 2 1;
(€} @lex) = A-2p(x) whenever x € M,,,.

Proof. To start with, note from the definition of e, and from Proposition 2(d)
that e, € M, 45 N M, for each n and so (i) is immediate. Also, e,(a, f) = ,(8,0) € R
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50 that e, = ¢, Now compute:

e, By = Y, eda ey, f) =

vED

=9,

*16*tn ua' 1ab x"nné’u v \"uua' w1tre) 6'“.4 Paen X

I(li n

(LRSI T N Yinry

X o ("n-: "nn)
1760273510y Yansa " amua}

Yoy ™V1a02

)

= 6‘1-"1." 'ﬁu"m:s'znx"uu‘s‘ul“n]‘i'(w' L U™

X

(n)
@) (neD)l2y A, 0y

(e, 'lanu) Wy 1§40 = ¢ (0, B),

X () () ) E T Eh
I‘u 84m Jal kel

since
Am
o Y o M
55 = e, =i,
jmt b=

thus establishing that each e, is a projection.
As for (c), il x€ M, ,,. then (e,x)a,a) = E e.a. y)x(y, a). it follows from
760
the definitions of M,,, and e, thet e,(a,y)x(ya) can be non-zero only if
Apy 2n)upsrs 2,000 = VL ea)UERa+ L0rs Ttn = Tane o Baney = Ransds You = Yansa and yy,,; =
= Yyeq: this implies that

(e a) = 5, 0 U 1) ar sty (T 3 @ae )

CiTinnd Tt it Tme2

and since ¢,x € M,,y, it follows from equation (4) that

(re3y
Zoas1

ole,x) = Z (EaX2n)4 gt Q)
aea)

(a1 1) (m) (2
= % (’7‘.“I‘yh)xlnﬂ()'|y)’y; V=
YEQy g

= eg ’1(,:::)qu(7, A= 2-lg(x) (since tUk+2 = -1,
Y€y
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We come finally 1o (b). It is a consequence of the definition of the e,'s that
{a.pB y. x € Q, then the only way that (e,(a, y)e,+,(y. X)e.(x, f)) can be non-zero
il
@30) = Yoa)r A(2n9d = Yptasdr Ton = Tpaags Cenen = Zansas Yaner = Yaaemn

ﬂh) = M)y p(uu = Xineds Ban = Prnsis Brasr = Bonear Xaner = Xaanas

Vins 2] = Xansg)s Vitneg = X(zrogr Y2as3 = Vaasgr Paea = Viavss
and

X2a43 = Apne g

which happens precisely when
o) = Banyy Qs = Plaasas oo = Bone s Cansr = Toness frner = Prnsns

y = (o, cror Moy Opna gy Moo gu Dones s Zans Lonas s Bonsgs Tonags - - -)

and
x=(f, nnﬁsn-ﬂ:nbsnﬁh»p/’uq-ﬁnvIguos-l’nq-ﬂi«n- )

Tt can now be deduced that
(Cuanitd@ ) = Y, ey vewes(y, ¥enl, ) =
yxEQ

=34,
"u“n.)‘s':."n u's'm:"ma's’m» Pamy 6’lmnn"[uu X

(u+:) P (-+n,§.~~) (1) (xn)),n
: T 4 e u-l

=Ai-le(a, f),

(R (k1) (me 1312 (m)
I'Il(l Trase I‘-lll ) I‘

since I““) = A7) and 4t =2 and since @y =y, = foa =

= fuasy for any (a, f) for which either e (e, B) # 0 or (e,e,, 6.}z, f) # 0.
A similar argument shows that e,e,_ e, = 1%, and the proof of the propo-
silion is complete.

Note. Tt must be remarked here that e,, as above, is precisely the projection
in M_,y that implements the conditional expectation of M,,, onto M, in the sense
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that e,xe, = E,(x)e, Yx€ M,,, where E, is the unique condilional expectalion
of M, onto M, which is compatible with the trace t/M,,,: this is fairly easily
established using the (also casily established) formula for the conditional expectation
E, . of M, onto M_ (where nt < n) given by

Ilﬁ)

4,
Eoath@f = § 5 xafae0.840)
[m.10) (O,

Y™

whenever x € M,, and 2, fl € Qy,) satisly a,, = B,,,. a

The next proposition identifies the range of each e,, where of course we are
assuming that the underlying Hilbert space is LYR. p~).

PrOPOSITION 7. Let § € LR, p™) and n > | then, § belongs to the range
of e, if and only if there is a function f defined on Qz,\ypn gas 1y X R such tha
for p"-ae. (a,B) in R, we have

{a. p) =4, 5, (’(””)mﬂ"b\m‘nm- A.

Proof. e,§ = & il (e8)a. f) = &(a, f) a.e.(u”); now compule:

(), B) = ¥, ena1)i(y. ) = &, 5
Y

“eattnid TrmerPuea

ety (a2
A 7 !

rox Aot (1 i
X(Z ) ,—,I','x(aa,o(/kj)-a,,....m}

jat dml .
This shows that if § = ¢, then &(a, f) has the prescribed form. Conversely, if
&(a, B) has the prescribed form, it is not too hard lo verify that e, = £. @

REMARK. The author became aware, after the preparation of this paper.
that A. Ocneanu has obtained (cf. (3]) essentially identical formulae for the pro-
jections e, that arise when one ilerales Jones' basic construction in the case of
the inclusion N ¢ M of a general pair of hyperfinite T, factors which salisfy
M n N’ = Cl; he does Lhis by considering the AF-algebra generated by the increasing
sequence {A, :n > 0} of fnite-dimensional C*-algebras defined by A, = M, nN".
where M, = N, M, =M, and Myc M, c My c ... is the lower oblained by
ilerating Jones' basic consiruction in the case of the inclusion N ¢ M.
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