## A MODEL FOR AF ALGEBRAS AND A REPRESENTATION OF THE JONES PROJECTIONS

V. S. SUNDER

A model for approximately finite-dimensional (henceforth abbreviated to AF) algebras is developed here, which may be looked upon as a matrix-theoretic/ergodic theoretic alternative to the model developed in [4]. One advantage of this model is that it leads directly to a certain Borel space and a canonical (tail-) equivalence relation on it, which underlies the GNS representation of the AF-algebra associated with any trace on the algebra that factors through the conditional expectation onto an appropriate Cartan subalgebra.

As an application of this model, we construct a representation of a sequence  $\{c_n\}$  of projections in the hyperfinite  $\Pi_1$  factor which satisfy:  $e_n e_m = e_n e_n$  if |m-m| > 1,  $c_n e_{n+1} e_n = e_n e_n$  if |m-m| > 1,  $c_n e_{n+1} e_n = e_n e_n$  if |m-m| > 1. The Perron-Eigenvalue of a primitive (in the sense of the Perron-Frobenius theory) matrix of the form  $AA^n$  where A is a non-negative matrix with non-negative integral entries. Such sequences were encountered in [1] and it is the author's belief that the model developed here could be used in the problem of constructing subfactors of the hyperfinite  $\Pi_1$  factor with trivial relative commutant and index  $r^{-1}$  with r as above. We obtain explicit formulae for these projections by applying our model to the AF-algebra resulting from an application of what Jones calls his "basic construction" to a pair of finite-dimensional  $C^n$ -algebras with inclusion matrix A.

We begin by reviewing some basic facts concerning inclusions of finite-dimensional  $C^{\bullet}$ -algebras, and by setting up the notation to be used in the sequel. Recall that any finite-dimensional  $C^{\bullet}$ -algebra N is of the form  $N \cong N_1 \oplus N_2 \oplus \cdots \oplus N_n$ , where  $N_i \cong M(n_i, C)$ : the vector  $\mathbf{n} = (n_1, \dots, n_n)^n$  will be called the dimension-vector of N- it is uniquely determined, up to a permutation, by N. If  $N \subset M$  is a unital inclusion of finite-dimensional  $C^{\bullet}$ -algebras, where  $M \cong M_1 \oplus \cdots \oplus M_m$ , with  $M_i \cong M(n_{ij}, C)$ , the associated inclusion matrix  $A = A_M^M$  is the  $n \times m$   $\mathbb{Z}_+$ -valued matrix with  $A_{ij} =$  the number of simple components of a simple  $M_r$ -module when viewed as an  $N_r$ -module. (The matrix A is uniquely determined once one has chosen ordered partitions of unity  $\{p_1, \dots, p_n\}$  and  $\{q_1, \dots q_m\}$  into minimal central projections of N and M respectively.) The dimension vectors n and m then satisfy  $m = A^n$ , where  $A^n$  denotes the transpose of A.

With M as above, there is a bijective correspondence between faithful traces t on M and strictly positive vectors in  $\mathbb{R}^m$ , the correspondence being given by  $\tau(x_1\oplus\ldots\oplus x_m)=\sum_i t_i \operatorname{tr} x_i$ , where 'tr' denotes the usual trace on matrix algebras. It is known that if a trace  $\tau$  on M corresponds to t in  $\mathbb{R}^m$ , and if a trace  $\sigma$  on N corresponds to s in  $\mathbb{R}^n$ , then  $t/N=\sigma$  iff s=At.

REMARK. For the reader who is more comfortable with Bratteli diagrams, at might be worth mentioning that as far as book-keeping devices go, the Brattel diagram and the inclusion matrices are equivalent; thus, for instance, if  $M_a$  denotes the group algebra of the symmetric group  $S_a$  on n letters, the two equivalent ways of describing the tower  $M_1 \subseteq M_2 \subseteq M_3 \subseteq M_4$  are:



(Note that multiple edges in the diagram would correspond to entries larger than one in the inclusion matrices.)

Suppose now that  $M_1 \subset M_2 \subset \dots$  (\*) is an ascending chain of finite-dimensional  $C^*$ -algebras. Once and for all, choose and fix ordered partitions of unity  $\{p_1^{(n)},\dots,p_n^{(n)}\}$  into minimal central projections in  $M_a$ . With respect to this choice let us write  $A^{(n)}$  for the inclusion matrix  $A^{(M_a)}_{M_a}$ . Thus, if  $\mathbf{m}^{(n)}$  is the dimension vector of  $M_a$  — so that  $\dim p_1^{(n)}M_a = (m_1^{(n)})^2$  — we have  $\mathbf{m}^{(n-1)} = \{A^{(n)}\}\mathbf{m}^{(n)}$  and in particular,  $\mathbf{m}_1$  and  $\{A^{(n)}, m \ge 1\}$  determine  $\mathbf{m}^{(n)}$  for all  $n \ge 1$ .

Our aim, now, shall be to start with the data  $\{m^{(1)}, A^{(1)}, A^{(1)}, \dots\}$  and build a model of an AF-algebra with this data. Specifically, we assume that the following data are given:

- (a) a sequence  $\{v_n : n \ge 1\}$  of positive integers:
- (b) a vector m(1) in R'1 with positive integral coordinates; and
- (c) a sequence  $\{A^{(n)}: n \ge 1\}$ , where,  $A^{(n)}$  is a non-zero  $v_n \times v_{n+1}$  matrix with non-negative integral entries.

As above, we have a sequence  $\{\mathbf{m}^{(n)}: n \ge 1\}$  defined by  $\mathbf{m}^{(n)} = \{(A^{(1)},A^{(2)},\dots,A^{(k-1)})^{k},\mathbf{m}^{(k)}\}$ . The starting point for the construction is a certain gate of sequences.

DEFINITION 1. With  $v_n$ ,  $A^{(n)}$ ,  $\mathbf{m}^{(1)}$  as above, define the associated sequence-space  $\theta$  as follows:

$$g = \{ z \in \mathbf{Z}_{-}^{\mathbf{Z}_{-}} \colon 1 \leqslant \alpha_{2n} \leqslant v_{n}, \ 1 \leqslant \alpha_{1} \leqslant m_{\sigma_{1}}^{(1)}, \ 1 \leqslant \alpha_{2n+1} \leqslant \Lambda_{2n}^{(n)}, \ constant \le 1 \},$$

where, of course, 
$$\mathbf{Z}_{+} = \{1, 2, \ldots\}$$
.

The following notation will be handy in the future: for any subset I of  $\mathbb{Z}_+$ , we shall write  $\alpha \to \alpha_I$  for the restriction mapping  $\Omega \to \mathbb{Z}^I$ ; thus, for instance,  $\alpha_{i+1} = (\alpha_2, \alpha_3, \alpha_4)$ ; we shall also write  $\alpha_i$  for  $\alpha_{(1,\alpha)}, \alpha_i$  for  $\alpha_{(1,\alpha)}, \alpha_i$  for  $\alpha_{(1,\alpha)}, \alpha_i$  for  $\alpha_{(1,\alpha)}$ . We shall write  $\Omega_I$  for the set  $\{\alpha_i: \alpha \in \Omega\}$ . One last bit of notation:  $\alpha_i'(\lambda_1, \dots, I_1)$  is a partition of  $\mathbb{Z}_+$ , and if  $\gamma_i \in \Omega_{I_1}$  for  $1 \le i \le k$ , and if there exists  $1 \in \Omega$  such that  $\alpha_{I_1} = \gamma_i$  for  $1 \le i \le k$ , we shall write  $\gamma_1 * \dots * \gamma_k$  for  $\alpha$ .

Now consider the (in general, non-separable) Hilbert space  $/^4(\Omega)$  of square-summable functions on  $\Omega$ : denote the canonical orthonormal basis by  $\{\xi_\beta:\beta\in\Omega\}$ .  $\Pi_{\text{ths.}}$   $\xi_\beta|\alpha|=\delta_{\gamma,\beta}$ , where  $\delta$  denotes the Kronecker symbol.) Each (bounded) operator x on  $/^2(\Omega)$  corresponds uniquely to its matrix  $((x(\alpha,\beta)))_{\alpha,\beta\in\Omega}$ , where, of course,  $(\gamma,\beta)=\langle x_\beta^2,\xi_\beta\rangle$  for every  $\alpha$  and  $\beta$  in  $\Omega$ .

For n = 1, 2, ..., define  $M_*$  to be the set of operators x on  $\ell^2(\Omega)$  whose manifest satisfy the following conditions:

- (i)  $x(\alpha,\beta) = 0$  unless  $\alpha_{12n} = \beta_{12n}$ ; and
- (ii)  $x(\alpha,\beta) = x(\alpha',\beta')$  whenever  $\alpha, \beta, \alpha', \beta' \in \Omega$  satisfy

$$\alpha_{(2n)} = \beta_{(2n)}, \quad \alpha'_{(2n)} = \beta'_{(2n)}, \quad \alpha_{(2n)} = \alpha'_{(2n)} \quad \text{and} \quad \beta_{(2n)} = \beta'_{(2n)}.$$

In other words,  $x \in M_n$  iff there is a function  $x_{2n}: \Omega_{2n} \times \Omega_{2n} \to \mathbb{C}$  satisfying

(1) 
$$x(\alpha,\beta) = \delta_{\alpha_{1},\alpha_{1},\beta_{1},\alpha_{2}} x_{2n_{1}} (\alpha_{2n_{1}}, \beta_{2n_{1}}) \quad \forall \alpha, \beta \in \Omega.$$

PROPOSITION 2. (a) Each M. is a finite-dimensional C\*-algebra of operators:

- (b)  $M_n \subset M_{n+1}$  for all  $n \ge 1$ :
- (c) if x' is an operator on  $\ell^2(\Omega)$ , then  $x' \in M'_n$  iff there exists a bounded measwable function  $x_{12n}' : \Omega_{12n} \times \Omega_{12n} \to \mathbb{C}$  such that

$$x'(\alpha,\beta) = \delta_{\alpha_{2n} \mid \ , \, \beta_{2n} \mid} \, x'_{\lfloor 2n}(\alpha_{\lfloor 2n}, \ \beta_{\lfloor 2n}) \quad \textit{for all } \alpha, \ \beta \in \Omega \, ;$$

(d) if  $x \in \mathcal{L}(l^2(\Omega))$ , and if  $n \leq m$ , then  $x \in M_m \cap M'_n$  iff there exists a function  $x_{\lfloor 2n,2m \rfloor} : \Omega_{\lfloor 2n,2m \rfloor} \times \Omega_{\lfloor 2n,2m \rfloor} \to \mathbb{C}$  such that

$$x(\alpha, \beta) = \delta_{s_{2n}, f_{2n}} \delta_{s_{[2m]}, \beta_{[2m]}} x_{[2n, 2m]} (\alpha_{[2n, 2m]}, \beta_{[2n, 2m]}),$$

for all  $\alpha$ ,  $\beta$  in  $\Omega$ ; in particular,  $x \in Z(M_n)$  iff there exists a function  $x_{thet} : \Omega_{thet} \to \mathbb{C}$  such that

$$x(\alpha,\beta) = \delta_{\alpha,\beta} x_{(2\alpha)} (\alpha_{2\alpha},\beta_{2\alpha}) \quad \forall \alpha,\beta \text{ in } \Omega$$

(and consequently, Z(M\_) is v\_-dimensional);

- (c) for each  $n \ge 1$  and  $1 \le j \le v_n$ , define projections  $p_1^{(n)}$  in  $\mathbb{Z}(M_n)$  by  $p_1^{(n)}(\alpha, \beta) = \delta_{n,p}\delta_{j,n_{2n}}$ , then,  $\{\rho_1^{(n)}, \ldots, \rho_{n}^{(n)}\}$  is a partition of 1 into minimal central projections of  $M_n$ :
- (f) with respect to  $\{p_1^{(n)}, \ldots, p_{r_n}^{(n)}\}$  and  $\{p_1^{(n+1)}, \ldots, p_{r_{n+1}}^{(n+1)}\}$ , the inclusion matrix  $A^M$ . is precisely the matrix  $A^{(n)}$ .

*Proof.* (a) & (b). It is clear from the definition that  $M_* \subset M_{*+1}$  and that  $M_*$  is a self-adjoint vector space of operators: to verify that  $M_*$  is an algebra, if z = xy, with  $x, y \in M_*$  and if  $\alpha, \beta \in \Omega_*$  we have

$$\begin{split} z(\alpha,\beta) &= \sum_{\gamma \in \Omega} x(\alpha,\gamma) \, y(\gamma,\beta) = \\ &= \sum_{\gamma \in \Omega} \delta_{e_{1:k},\gamma_{1:k}} \, \delta_{\gamma_{1:k}, \, \beta_{1:k}} \, x_{2:n}[\alpha_{2:n}, \, \gamma_{2:n}]) \gamma_{2:n}[\gamma_{2:n}, \, \beta_{2:n}]) = \\ &= \delta_{e_{1:k}, \, \delta_{1:k}} \, \sum_{(\gamma \in \Omega) : \, \gamma_{1:k} = -e_{1:k}} \, x_{2:n}[\alpha_{2:n}, \, \gamma_{2:n}] \, \gamma_{2:n}[\gamma_{2:n}, \, \beta_{2:n}]); \end{split}$$

notice now that the sum, although seeming to depend upon  $\alpha_{l2a}$ , actually does not, since

$$\sum_{\{\gamma\in\Omega:\,\gamma_{\{1_0}=e_{\{1_0}\}}f(\gamma_{2n}))=\sum_{\{\theta\in\Omega_{2n}:\,\theta_{2n}=a_{2n}\}}f(\theta),$$

for any function f defined on  $\Omega_{2a}$ .

Finally,  $M_n$  is finite-dimensional, since it has a finite basis given by  $\{u_{\gamma,x}: \gamma, x \in \Omega_{2n}\}$ ,  $\gamma_{2n} = x_{2n}\}$ , where

(2) 
$$u_{\gamma, \alpha}(\alpha, \beta) = \delta_{a_{\lceil 2\alpha \rceil}, \theta_{\lceil 2\alpha \rceil}} \delta_{\gamma, a_{\lceil 2\alpha \rceil}} \delta_{\alpha, \beta_{\lceil 2\alpha \rceil}}$$

(c) Let  $x' \in \mathcal{L}(\ell^2(\Omega))$ , and let  $\{u_{\gamma, w} \colon \gamma, w \in \Omega_{2\alpha}\}$  be as in (2) above. Then, or any  $\alpha, \beta$  in  $\Omega$ , we have

$$\begin{split} (x'u_{\gamma,\kappa})(\alpha,\beta) &= \sum_{\theta \in \mathcal{Q}} x'(\alpha,\theta) \delta_{\theta_{\{2\kappa},\theta_{\{2\kappa}\}} \delta_{\gamma,\theta_{\{2\kappa\}}} \delta_{\kappa,\theta_{\{2\kappa\}}} = \\ &= \delta_{\kappa,\theta_{\{2\kappa\}}} x'(\alpha,\gamma e \beta_{\{2\kappa\}}); \end{split}$$

silthough the concatenation  $\gamma \circ \beta_{12n}$  may be inadmissible if  $\gamma_{2n} \neq \beta_{2n}$ , note that the right side is non-zero only when  $x = \beta_{2n}$ , in which case, we have  $\gamma_{2n} = x_{2n} = \beta_{2n}$  and there is no problem). A similar computation shows that

$$(u_{\gamma,\times}\,x')(\alpha,\,\beta) = \delta_{\alpha_{\alpha\alpha},\cdot\gamma}\,x'(x{\circ}\alpha_{i\,\alpha\alpha}\,,\,\beta)\,.$$

Hence,  $x' \in M_n'$  iff x' commutes with  $u_{\tau,x}$  for each  $\gamma, x$  in  $\Omega_{2n1}$  satisfying  $\gamma_{2n} = x_{2n}$  which happens iff  $\delta_{\tau_{\tau_1} \gamma, \tau'}(x \cdot \alpha_{(2n)} \beta) = \delta_{\pi, \theta_{\tau_{2n}}} x'(\alpha, \gamma \cdot \theta_{(2n)})$  for every  $\alpha$ ,  $\beta$  in  $\Omega$  and for every  $\gamma, x$  as above: it is not very hard now to deduce (c).

- (d) and (e) are fairly easy consequences of (c).
- (f) With  $\{p_i^{(n)}: 1 \le i \le v_n\}$  and  $\{p_i^{(n-1)}: 1 \le j \le v_{n+1}\}$  as in (e), note that  $I_{M_n}^{M_{n-1}}(i,j)$  is the maximum number of pairwise orthogonal non-zero projections in  $M_{M_n+1}(M_n)p_i^{(n)}p_j^{(n-1)}$ : it is easily seen (using the description of  $M_{n+1}\cap M_n'$  given by (d)) that such a collection is given by  $\{q_i: 1 \le k \le J(j_i^n)\}$ , where

$$q_k(\alpha, \beta) = \delta_{\alpha, \beta} \delta_{i, x_{2n}} \delta_{k, x_{2n+1}} \delta_{j, x_{2n+2}}.$$

Let  $M_1\subset M_2\subset \ldots$  be as above, and let us write  $M_\infty$  for  $\bigcup M_n$ . We shall denote by C the collection of operators in  $M_\infty$  which have a diagonal matrix with respect to the canonical basis of  $\ell^2(\Omega)$ ; thus,  $C=\{x\in M_\infty: x(\alpha,\beta)=\delta_{n,\beta}\varphi(\alpha)\}$  for some bounded function  $\varphi$  on  $\Omega$ . It is fairly clear that C is an abelian  $\varphi$ -subalgebra of  $M_\infty$ : in fact, if we let  $C_n=C\cap M_n$ , then  $C_n$  is a maximal abelian C-subalgebra of  $M_n$  and there is a natural identification:  $C_n\cong \ell^\infty(\Omega_{2n})$ . It is also clear that the map  $E: M_\infty \to C$  given by  $(Ex)(\alpha,\beta)=\delta_{n,\beta}x(\alpha,\alpha)$  defines a conditional expectation of  $M_\infty$  onto C.

PROPOSITOIN 3. (a) Let  $\varphi$  be a state on  $M_{\infty}$ . Then there is a unique probability measure  $\mu$  defined on the Borel sets of  $\Omega$  such that

(3) 
$$\varphi(x) = \int x(\alpha, \alpha) \, d\mu(\alpha) \quad \text{for all } x \text{ in } C.$$

(b) If  $\mu$  is a probability measure defined on the Borel sets of  $\Omega$ , there is a unique state  $\varphi$  on  $M_{\infty}$  which satisfies both (3) and the condition  $\varphi = \varphi \in E$ . (Thus, equation (3) sets up a bijection between probability measures  $\mu$  on  $\Omega$  and states  $\varphi$  which satisfy  $\varphi = \varphi \circ E$ .)

Proof. Since  $C_n \cong \ell^{\infty}(\Omega_{2n})$ , it follows – by considering  $\varphi/C_n$  – that for each n, there is a unique probability measure  $\mu_n$  defined on the subsets of  $\Omega_{2n}$  such that  $\varphi(x) = \int_{\Omega_{2n}} x_{2n}(y, y) \, \mathrm{d}\mu_n(y)$  for all x in  $C_n$ . Since  $(\varphi/C_{n+1})/C_n = \varphi/C_n$ , it follows  $\alpha_{n+1}$ 

that the sequence of measures  $\{\mu_n\}$  is consistent in the sense that if  $F \subset \Omega_{c_1}$ , and if  $F' = \{\alpha \in \Omega_{t_0+1} : \alpha_{t_0} \in F\}$ , then  $\mu_{n+1}(F') = \mu_n(F)$ . It follows now from Kolmogorov's consistency theorem that there is a unique probability measure  $\mu$  on  $\Omega$  such that for each  $n \ge 1$ , and for every  $F \subset \Omega_{t_0}$ ,  $\mu(\{\alpha \in \Omega : \alpha_{t_0} \in F\}) = \mu_n(F)$ : it follows easily that this  $\mu$  satisfies (3).

(b) Any probability measure  $\mu$  on  $\Omega$  defines a state  $\varphi_0$  on C via equation (3): ust let  $\varphi = \varphi_0 \circ E$ .

We shall now consider the GNS-representation  $\pi_{\sigma}$  associated with a state  $\sigma$  on  $M_{\infty}$  which satisfies  $\varphi = \varphi \cdot E$ . Let  $\mu$  be the probability measure on  $\Omega$  which is associated with  $\varphi$  as in Proposition 3. We shall see that  $\pi_{\sigma}(M_{\infty})^*$  may be naturally identified with the groupoid-von Neumann algebra associated with  $(R, \mu^*)$ , where R is the "tail-equivalence relation" on  $\Omega$  and  $\mu^*$  is a measure on R obtained using  $\mu$  and counting measure on the orbits.

To be precise, let us define

$$R = \{(\alpha, \beta) \in \Omega \times \Omega : \exists n \ge 1 \text{ such that } \alpha_{t^2n} = \beta_{t^2n}\}.$$

Clearly R defines an equivalence relationon  $\Omega$  which is Borel – in fact, R is an  $F_{\sigma}$  subspace of the Polish space  $\Omega \times \Omega$ . Let  $\mu^*$  be the measure defined on the Borel subsets of R by

$$\mu^{\sim}(F) = \int_{\beta \in \Omega} 1_F(\beta, \alpha)) \, \mathrm{d}\mu(\alpha).$$

(Here and elsewhere, the symbol  $\Gamma_F$  will denote the indicator- or characteristic function of F. Notice that since R-equivalence classes are countable, there are no measurability problems.) The measure  $\mu^-$  is a positive  $\sigma$ -finite measure, since R is exhausted by the increasing sequence  $\{F_n\}$  of sets of finite measure, given by  $F_n = \{\{\alpha, \beta\} \in R: \alpha_{15n} = \beta_{12n}\}$ .

For each x in  $M_{\infty}$ , denote by  $\eta(x)$  the function defined on R by  $\eta(x)(\alpha, \beta) = \langle x\xi_{\beta}, \xi_{\gamma} \rangle$ . It follows from the definition of  $M_{\alpha}$  in terms of matrix-entries that if  $x \in M_{\alpha}$ , then  $\eta(x)$  is supported on the set  $F_{\alpha}$  defined in the last paragraph and that  $\eta(x)$  is a bounded function. It is obvious that  $\eta$  is an injective linear map from  $M_{\infty}$  onto  $\mathcal{W} = \eta(M_{\infty}) \subset L^2(R, \mu^-)$ ; hence  $\mathcal{W}$  becomes an associative algebra with involution, with respect to the operations defined by  $(\xi \cdot \eta)(\alpha, \beta) = \sum_{i=1}^{n} \zeta(\alpha, \gamma)\eta(\gamma, \beta)$  and  $\xi \cdot (\alpha, \beta) = \overline{\zeta}(\beta, \alpha)$  for all  $\zeta$ ,  $\eta$  in  $\mathcal{W}$ .

PROPOSITION 4. (a)  $\mathcal{H}$  is a left Hilbert algebra with respect to the above algebra structure and the inner product coming from  $L^2(R, \mu^-)$ ;

(b) the equation π(x)ζ = η(x)·ζ, ζ ∈ L<sup>2</sup>(R, μ̄), defines a representation π of M<sub>s</sub> in L<sup>2</sup>(R, μ̄);

(c)  $\pi(M_{\infty})$ " is the left von Neumann algebra of W;

(d) let  $\xi_0$  be the unit vector given by  $\xi_0(\alpha, \beta) = \delta_{0,\beta}$ ; then  $\xi_0$  is a cyclic and sparating vector for  $\pi(M_\infty)$  such that  $\varphi(x) = \langle \pi(x)\xi_0, \xi_0 \rangle$  for all x in  $M_\infty - y_0$  that this  $\pi$  is the GNS representation of  $M_\infty$  associated with  $\varphi$ .

*Proof.* Since  $\varphi = \varphi \circ E$ , it follows that for x in  $M_{\infty}$ ,

$$\varphi(x) = \varphi(Ex) = \int_{X} x(\alpha, \alpha) d\mu(\alpha)$$

and consequently, for any x, y in  $M_{\infty}$ ,

$$\varphi(y^*x) = \int_{D} (y^*x)(\alpha, \alpha) \, d\mu(\alpha) = \int_{D} (\sum_{\beta \in \Omega} \overline{y(\beta, \alpha)} \, x(\beta, \alpha)) \, d\mu(\alpha) =$$

$$= \int_{D} \eta(x) \, \overline{\eta(y)} \, d\mu^{-} = \langle \eta(x), \eta(y) \rangle;$$

further, for any x, y in  $M_{\infty}$  and  $(\alpha, \beta) \in R$ ,

$$(\eta(xy))(\alpha,\beta) = \sum_{\{\gamma \in \Omega: \{\alpha,\gamma\} \in R\}} x(\alpha,\gamma)y(\gamma,\beta) = (\pi(x)\eta(y))(\alpha,\beta)$$

and hence  $n(xy) = \pi(x)\eta(y)$ .

Finally, for each  $n \ge 1$ , let  $\mathcal{F}_n$  be the  $\sigma$ -algebra of sets in  $\Omega$  that is generated by the maps  $\{\alpha \to \alpha_j : 1 \le j \le 2n\}$ ; then the Borel  $\sigma$ -algebra  $\mathcal{F}$  is generated by  $\bigcup \mathcal{F}_n$  so that also the Borel  $\sigma$ -algebra of  $\Omega \times \Omega$  — which is just  $\mathcal{F} \otimes \mathcal{F}$ —is generated by  $\bigcup (\mathcal{F}_n \otimes \mathcal{F}_n)$ ; it follows that if K is any Borel set in  $\Omega \times \Omega$ , the reduced  $\sigma$ -algebra  $(\mathcal{F} \otimes \mathcal{F}_n)$ ) K (=  $\{F \cap K : F \in \mathcal{F} \otimes \mathcal{F}_n\}$ ) is generated by  $\bigcup (\mathcal{F}_n \otimes \mathcal{F}_n)/K$ ; hence if  $F_n = \{(\alpha, \beta) \in R : \alpha_{\{1n\}} = \beta_{\{2n\}}\}$  as before, it is not hard to deduce that  $\bigcup_{m,n=1}^{n-1} L^2(F_n, (\mathcal{F}_m \otimes \mathcal{F}_m)/F_n, \mu^-)$  is dense in  $L^2(R, \mu^-)$ . Notice now that if  $K = \max_{m,n} L^2(R, \mu^-)$ , then  $L^2(F_n, (\mathcal{F}_m \otimes \mathcal{F}_m)/F_n, \mu^-) = \eta(M_k) \subset \mathcal{M}$  and so  $\mathcal{M}$  is dense in  $L^2(R, \mu^-)$ . (In fact,  $\eta(M_n) = L^2(F_n, (\mathcal{F}_m \otimes \mathcal{F}_m)/F_n, \mu^-)$ ) and hence the above double-union is exactly equal to  $\mathcal{M}$ .)

All the assertions of the proposition may now be easily deduced from what has been established so far.

We shall now consider traces on  $M_{\infty}$ . Suppose that  $\varphi$  is a faithful tracial sate on  $M_{\infty}$ . Let  $t^{**}$  be the positive vector in  $\mathbb{R}_{+}^{r_{\alpha}}$  which corresponds to the trace  $\eta(M_{\alpha})$ ; thus, if  $x \in M_{\alpha}$ 

$$\varphi(x) = \sum_{y \in \Omega_{n-1}} t_{y_{2n}}^{(n)} X_{2n}[y_{2n}, y_{2n}];$$

this equation shows that  $\varphi = \varphi_0 \circ E$  and so  $\varphi$  corresponds to a unique probability measure  $\mu$  as in Proposition 3. Further, we also know that  $\mathfrak{t}^{(n)} = A^{(n)}\mathfrak{t}^{(n+1)}$ .

In the converse direction, it is clear that if {t'"} is a sequence satisfying

- (i) tim is a strictly positive vector in R,, and
- (ii)  $A^{(n)}t^{(n+1)} = t^{(n)}$ , for all  $n \ge 1$ ,

then there is a uniquely defined faithful tracial state  $\varphi$  on  $M_\infty$  such that  $\varphi/M_*$  corresponds to  $t^{(n)}$ . For convenience of reference, we include the following fairly well-known result.

LEMMA 5. Let  $\Lambda$  be a  $\nu \times \nu$  matrix with non-negative integral entrits, and such that  $\Lambda$  is primitive in the sense that  $\Lambda^k$  has strictly positive entries for somet  $k \geqslant 1$ . Let  $M_\infty$  be an AF-algebra for which  $\Lambda^{(n)} = \Lambda$  for every  $n \geqslant 1$ . Then there is a unique tracial state  $\varphi$  on  $M_\infty$ ; further  $\varphi$  is faithful. In particular,  $(\pi_\varphi(M))^{(n)}$  is the hyperfinite  $\Pi_1$  factor, where of course  $\pi_\varphi$  denotes the GNS representation of  $M_\infty$  associated with  $\varphi$ .

*Proof.* It follows from the standard Perron-Frobenius theory that if  $\lambda$  is the spectral radius of  $\Lambda$ , there is a strictly positive vector  $\mathbf{t}^{(1)}$  in  $\mathbf{R}^*$  such that  $\Lambda \mathbf{t}^{(1)} = \lambda \mathbf{t}^{(1)}$ . Now define  $\mathbf{t}^{(n)} = \lambda \mathbf{1}^{1-n}$   $\mathbf{t}^{(1)}$  and note that  $\Lambda \mathbf{t}^{(n+1)} = \mathbf{t}^{(n)}$  for all n. Let  $\mathbf{w}^{(1)} \in \Sigma$ , be arbitrary. Assume that  $\mathbf{t}^{(1)}$  has been so normalised that  $\sum_{i=1}^{n} \mathbf{t}_i^{(i)} \mathbf{w}_i^{(i)} = 1$ ; this ensures that the trace  $\varphi$  on  $M_{\infty}$  that is induced by the sequence  $\{\mathbf{t}^{(n)}\}$  is a state. Further the strict positivity of  $\mathbf{t}^{(n)}$  for each n implies that  $\varphi$  is faithful.

If  $\varphi$  is another tracial state and if  $\mathfrak{t}^{-(n)}$  is the vector in  $\mathbb{R}^n$ , which corresponds to  $\varphi^-/M_n$ , it follows that  $\mathfrak{t}^{-(n)}\in\bigcap_{n}A^n\mathbb{R}^n$ , since  $\mathfrak{t}^{-(n)}=A^n\mathbb{R}^{n-(n+k)}$  for every n and k; on the other hand, it is a consequence of the primitivity of A that  $\bigcap_{k>0}A^k\mathbb{R}^n$ ;  $=\mathbb{R}_k\mathfrak{t}^{(k)}$ ; deduce that  $\mathfrak{t}^{-(n)}=\alpha_k\mathfrak{t}^{(n)}$  for some positive scalar  $\alpha_n$ ; since  $A\mathfrak{t}^{(n)}=\mathfrak{t}^{n-(n-k)}$  and  $A\mathfrak{t}^{+(n)}=\mathfrak{t}^{-(n-1)}$ , conclude that all the  $\alpha_n$  are equal and therefore  $\varphi^-=\varphi$ . The fact that there is a unique tracial state on  $M_\infty$  clearly implies that  $\pi_n(M_\infty)''$  is a factor of finite type; the primitivity of A guarantees the infinite-dimensionality of  $M_\infty$  and the proof is complete.

Note. (a) There is an obvious minor generalisation of the preceding lemma: if  $M_{\infty}$  is built out of the data  $(m^{(1)}, A^{(n)}: n \ge 1)$ , if the sequence  $(A^{(n)})$  is periodic i.e., there is a  $k \ge 1$  such that  $v_{n+k} = v_n$  and  $A^{(n+k)} = A^{(n)}$  for every n and if  $(A^{(1)} ... A^{(k)})$  is primitive in the sense of the lemma, then  $M_{\infty}$  admits a unique tracial state which is automatically faithful. (Reason:  $M_{\infty} = \bigcup M_{\infty}^{n}$  where  $M_{\infty} = M_{\infty}$  and the lemma applies.)

(b) The argument in the lemma also shows how to construct AF-algebras which do not admit any faithful tracial state; for instance, let  $v_a=2$  for every u and let  $A^{(m)}=\begin{bmatrix}1&1\\0&1\end{bmatrix}$ , and note that  $\bigcap_{n\geq 1}A^nR_+^2=R_+\begin{bmatrix}1\\0\end{bmatrix}$ , and so if a trace  $\varphi$  on  $M_{\alpha}$ 

corresponds to the sequence  $\{t^{(n)}\}$ , then  $t^{(n)} = \begin{bmatrix} a_n \\ 0 \end{bmatrix}$  for some  $a_n \ge 0$  for all n, so that  $\varphi$  is not faithful.

Henceforth, we shall assume that:

- (i)  $v_{2n+1} = v_1$  and  $v_{2n} = v_2$  for all  $\pi$ ;
- (ii)  $\Lambda^{(ta+1)} = \Lambda$  and  $\Lambda^{(ta)} = \Lambda^t$  where  $\Lambda$  is a fixed  $\nu_1 \times \nu_2$  matrix with son-negative integral entries such that  $\Lambda\Lambda^t$  is primitive in the sense of the preceding kmma with Perron eigenvalue and eigenvector denoted by  $\lambda$  and  $t^{(1)}$  respectively:
  - (iii)  $t^{(2n+1)} = \lambda^{-n}t^{(1)}$  and  $t^{(2n)} = \Lambda^{(2n+1)}$  for all n:
  - (iv) φ is the faithful trace on M<sub>∞</sub> associated with {t<sup>(n)</sup>};
  - (v)  $\Omega$  is the associated sequence space;
  - (vi)  $\mu$  is the measure on  $\Omega$  associated with  $\varphi$ ; and
  - (vii)  $R \subset \Omega \times \Omega$  as in Proposition 4.

Hence, by the last lemma and Proposition 4, the left von Neumann algebra usociated with  $\mathscr U$  as in Proposition 4 is the hyperfinite  $\Pi_1$  factor. The reason for our interest in this special case is that this is precisely the situation that is encountered then one applies Jones' "basic construction" to the inclusion  $M_1 \stackrel{\triangle}{\leftarrow} M_T$ . In the ext proposition, we give explicit formulae for the resulting sequence  $\{e_n:n\geqslant 1\}$  of projections in  $M_\infty$  which satisfy the relations

$$e_ie_i = e_ie_i$$
 if  $|i-j| > 1$ , and  $e_ie_{i+1}e_i = \lambda^{-1}e_i$  for all i.

PROPOSITION 6. For n=1,2,..., define the elements  $e_n$  in  $M_{\infty}$  — by their matrix-coefficients  $e_n(\alpha,\beta)$  — as follows:

$$e_s(\alpha, \beta) = \delta_{a_{2a_1}\beta_{2a_2}} \delta_{a_{2a_1a_2}\delta_{12a_1a_2}} \delta_{a_{2a_1a_2}\delta_{2a_1a_1}} \delta_{a_{2a_11}a_{2a_1a_2}} \delta_{\beta_{2a_11}\delta_{2a_1a_1}} \times \\ \times (t_{a_{a_{a_1a_1}}}^{(a_{a_1})}, t_{a_{a_{a_1a_1}}}^{(a_{a_1})})! t_{\beta_{a_{a_1}}}^{(a)}.$$

(of course, it is assumed we that are in the situation described by (i)—(vii) above) then  $\{e_i\}$  is a sequence of projections in  $M_{\infty}$  which satisfy the following:

- (a)  $e_m e_n = e_n e_m$  if |m n| > 1;
- (b)  $e_n e_{n+1} e_n = \lambda^{-1} e_n \ \forall \ n \ge 1$ ;
- (c)  $\varphi(e_{-}x) = \lambda^{-1}\varphi(x)$  whenever  $x \in M_{n+1}$ .

*Proof.* To start with, note from the definition of  $e_n$  and from Proposition 2(d) that  $e_n \in M_{n+2} \cap M'_n$  for each n and so (i) is immediate. Also,  $e_n(\alpha, \beta) = e_n(\beta, \alpha) \in \mathbb{R}$ 

so that  $e_n = e_n^{\bullet}$ . Now compute:

$$\begin{split} & e_{n}^{t}(\alpha,\beta) = \sum_{\gamma \in D} e_{n}(\alpha,\gamma)e_{\gamma}(\gamma,\beta) = \\ & = \delta_{a_{10}a_{20+1}} \delta_{a_{2n+1},a_{1n+2}} \delta_{a_{2n+1},a_{2n+2}} \delta_{a_{10}\gamma,a_{2n+1}} \delta_{a_{10}\gamma,a_{2n+1}} \delta_{a_{1n+1},a_{1n+2}} \times \\ & \times \sum_{(\gamma \in D: \gamma_{20})^{-a_{10}\gamma} \gamma_{(2n+1)}^{t} a_{2n+2}^{t}} \frac{(I_{a_{2n+1}}^{(n+1)})^{t/2} \cdot \frac{I_{2n+1}^{(n+1)}}{I_{2n+1}^{(n+1)}} I_{2n+1}^{(n+1)}}{I_{2n}^{t} I_{2n+1}^{(n)}} = \\ & = \delta_{a_{20}\alpha_{1n+1}} \delta_{a_{2n+1},a_{2n+2}} \delta_{a_{2n+1},a_{2n+2}} \delta_{a_{2n}\gamma,a_{2n+1}} \delta_{a_{2n}\gamma,a_{2n}} \delta_{a_{2n+1},a_{2n+2}} \times \\ & \times \frac{(I_{2n+1}^{(n+1)})^{t/2} \gamma_{n+1}}{I_{2n+1}^{(n)} I_{2n+1}^{(n)}} \sum_{j=1}^{(n)} \frac{A_{2n+1}^{(n)}}{A_{2n+1}^{(n)} I_{2n}^{(n)}} I_{2n+1}^{(n+1)} = e_{n}(\alpha,\beta), \end{split}$$

since

$$\sum_{l=1}^{N_{n+1}} \sum_{k=1}^{A_{n}(n)} t_{l}^{(n+1)} = (A^{(n)}t_{l}^{(n+1)})_{a_{2n}} = t_{a_{2n}}^{(n)},$$

thus establishing that each e, is a projection.

As for (c), if  $x \in M_{n+1}$ , then  $(e_n x)(\alpha, \alpha) = \sum_{y \in D} e_n(\alpha, y) x(y, \alpha)$ ; it follows from the definitions of  $M_{n+1}$  and  $e_n$  that  $e_n(\alpha, y) x(y, \alpha)$  can be non-zero only if  $\alpha_{(1, k_0) | (1 + k_0 + k_0)} = y_{(1, k_0) | (1 + k_0 + k_0)}$ ,  $\alpha_{k_0} = \alpha_{k_0 + k_0} + \alpha_{k_0 + k_0} = \alpha_{k_0 + k_0}$ ,  $\gamma_{k_0} = \gamma_{k_0 + k_0}$  and  $\gamma_{k_0 + k_0} = \gamma_{k_0 + k_0}$ . (his implies that

$$(e_{x}x)(\alpha,\alpha) = \delta_{e_{2n},e_{2n+2}} \delta_{e_{2n+1},e_{2n+2}} (t_{e_{2n-2}}^{(n+1)}/t_{e_{2n}}^{(n)}) x_{2n+2} (\alpha_{2n+3},\alpha_{2n+2})$$

and since  $e_n x \in M_{n+2}$ , it follows from equation (4) that

$$\begin{split} & \varphi(c_x x) = \sum_{\alpha \in \Omega_{2n+1}} (c_x x_{2n})_{+4} |(\alpha, \alpha)|_{a_{2n+1}}^{(n+2)} = \\ & = \sum_{\gamma \in \Omega_{2n+1}} (I_{2n+1}^{(n+1)} |I_{\gamma_{2n}}^{(n)}| x_{2n+21}(\gamma, \gamma) I_{\gamma_{2n}}^{(n+2)} = \\ & = \sum_{\gamma \in \Omega_{2n+1}} I_{2n+2}^{(n+1)} x_{2n+21}(\gamma, \gamma) \ \lambda^{-1} = \lambda^{-1} \varphi(x) \end{split} \qquad \text{(since } t^{(k+2)} = \lambda^{-1} t^{(k)}. \end{split}$$

We come finally to (b). It is a consequence of the definition of the  $e_k$ 's that if  $\alpha, \beta, \gamma, x \in \Omega$ , then the only way that  $(e_n(\alpha, \gamma)e_{n+1}(\gamma, x)e_n(x, \beta))$  can be non-zero in if

$$\begin{split} \alpha_{2n1} &= \gamma_{2n1}, \ \alpha_{(2n+4)} = \gamma_{(2n+4)}, \ \alpha_{2n} = \alpha_{2n+4}, \ \alpha_{2n+1} = \alpha_{2n+3}, \ \gamma_{2n+1} = \gamma_{2n+2}, \\ \beta_{2n1} &= \times_{2n1}, \ \beta_{(2n+4)} = \times_{(2n+4)}, \ \beta_{2n} = \beta_{2n+4}, \ \beta_{2n+1} = \beta_{2n+3}, \ \times_{2n+1} = \times_{2n+2}, \\ \gamma_{2n+21} &= \times_{2n+21}, \ \gamma_{2n+4} = \times_{(2n+6)}, \ \gamma_{2n+2} = \gamma_{2n+4}, \ \gamma_{2n+3} = \gamma_{2n+5}. \end{split}$$

and

$$x_{2n+3}=x_{2n+5},$$

which happens precisely when

$$\alpha_{2n} = \beta_{2n}, \ \alpha_{12n+4} = \beta_{12n+4}, \ \alpha_{2n} = \alpha_{2n+4}, \ \alpha_{2n+1} = \alpha_{2n+3}, \ \beta_{2n+1} = \beta_{2n+3},$$

$$y = (\alpha_1, \ldots, \alpha_{2n}, \alpha_{2n+5}, \alpha_{2n+6}, \alpha_{2n+5}, \alpha_{2n}, \alpha_{2n+5}, \alpha_{2n+6}, \alpha_{2n+7}, \ldots)$$

and

$$x = (\beta_1, \ldots, \beta_{2n}, \beta_{2n+5}, \beta_{2n+6}, \beta_{2n+5}, \beta_{2n}, \beta_{2n+5}, \beta_{2n+6}, \beta_{2n+7}, \ldots).$$

It can now be deduced that

$$\begin{split} &(e_{s}e_{n+1}e_{n})(\alpha,\beta) = \sum_{\gamma>e} e_{n}(\alpha,\gamma)e_{n+1}(\gamma,\chi)e_{n}(\alpha,\beta) = \\ &= \delta_{e_{2s}}\delta_{e_{2t}}\delta_{e_{2t}}\epsilon_{ln}(\delta_{e_{2t+1}}\delta_{e_{2t+1}}\epsilon_{ln+1}\delta_{ln+1})\delta_{e_{2t+1}}\delta_{e_{2t+1}}\delta_{e_{2t+1}}(\delta_{e_{2t+1}}\delta_{e_{2t+1}}\delta_{e_{2t+1}}\delta_{e_{2t+1}}\delta_{e_{2t+1}})\\ &\times \frac{(t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{2n+1}}^{(s_{n+1})}t_{s_{$$

since 
$$t_{s_{2n+4}}^{(n+2)} = \lambda^{-1} t_{s_{2n+4}}^{(n)}$$
 and  $t_{s_{2n+4}}^{(n+2)} = \lambda^{-1} t_{s_{2n+4}}^{(n)}$  and since  $\alpha_{2n} = \alpha_{2n+4} = \beta_{2n} = \alpha_{2n+4}$ 

=  $\beta_{2a+4}$  for any  $(\alpha, \beta)$  for which either  $e_n(\alpha, \beta) \neq 0$  or  $(e_n e_{n+1} e_n)(\alpha, \beta) \neq 0$ . A similar argument shows that  $e_n e_{n-1} e_n = \lambda^{-1} e_n$  and the proof of the proposition is complete.

NOTE. It must be remarked here that  $e_n$ , as above, is precisely the projection in  $M_{n+1}$  that implements the conditional expectation of  $M_{n+1}$  onto  $M_n$  in the sense

that  $e_n x e_n = E_n(x) e_n \ \forall \ x \in M_{n+1}$  where  $E_n$  is the unique conditional expectation of  $M_{n+1}$  onto  $M_n$  which is compatible with the trace  $t/M_{n+1}$ ; this is fairly easily established using the (also easily established) formula for the conditional expectation  $E_{n-n}$  of  $M_n$  onto  $M_n$  (where m < n) given by

$$(E_{n,m}x)_{2m}(\alpha,\beta) = \sum_{\substack{\theta \in \Omega_{\{n,m,n,m\}} \\ \theta_{n,m} = x_{2m}}} \frac{I_{\theta_{n,m}}^{(n)}}{I_{\theta_{n,m}}^{(n)}} \cdot x_{2m}(\alpha + \theta, \beta + \theta)$$

whenever  $x \in M_n$ , and  $\alpha, \beta \in \Omega_{2m}$  satisfy  $\alpha_{2m} = \beta_{2m}$ .

The next proposition identifies the range of each  $e_n$ , where of course we are assuming that the underlying Hilbert space is  $L^2(R, \mu^*)$ .

PROPOSITION 7. Let  $\xi \in L^2(R, \mu^*)$  and  $n \geqslant 1$ ; then,  $\xi$  belongs to the range of  $e_n$  if and only if there is a function f defined on  $\Omega_{Z * \setminus \{2n, 2n+4\}} \times \Omega$  such that for  $\mu^*$ -a.e.  $(\alpha, \beta)$  in R, we have

$$\xi(\alpha,\beta) = \delta_{a_{2n},a_{2n+1}} \delta_{a_{2n+1},a_{2n+2}} (t_{a_{2n+2}}^{(n+1)})^{1/2} f(\alpha_{\mathbb{Z}_{+} \setminus (2a,2n+4)},\beta).$$

*Proof.*  $e_n \xi = \xi$  iff  $(e_n \xi)(\alpha, \beta) = \xi(\alpha, \beta)$  a.e. $(\mu^-)$ ; now compute:

$$(e_a\xi)(\alpha,\beta) = \sum_{\alpha} e_n(\alpha,\gamma)\xi(\gamma,\beta) = \delta_{e_{2\alpha}e_{2\alpha+1}}\delta_{e_{2\alpha+1},e_{2\alpha+2}} \times$$

$$\times \left(\sum_{j=1}^{r_{n-1}}\sum_{k=1}^{A^{(n)}}\frac{t_{n-1}^{(n+1)}t_{\sigma(n+1)}^{(n+1)}t_{\sigma(n+1)}^{1/2}}{t_{n-1}^{(n)}}x(\alpha_{2n})*(jkj)*\alpha_{\{2n+4\}},\beta)\right)\cdot$$

This shows that if  $\xi = e_s \xi$ , then  $\xi(\alpha, \beta)$  has the prescribed form. Conversely, if  $\xi(\alpha, \beta)$  has the prescribed form, it is not too hard to verify that  $e_s \xi = \xi$ .

REMARK. The author became aware, after the preparation of this paper, that A. Ocneanu has obtained (cf. [3]) essentially identical formulae for the projections  $e_a$  that arise when one iterates Jones' basic construction in the case of the inclusion  $N \subset M$  of a general pair of hyperfinite  $\Pi_1$  factors which satisfy  $M \cap N' = C1$ ; he does this by considering the AF-algebra generated by the increasing sequence  $\{A_a: n \geqslant 0\}$  of finite-dimensional  $C^*$ -algebras defined by  $A_a = M_a \cap N'$ , where  $M_0 = N$ ,  $M_1 = M$ , and  $M_0 \subset M_1 \subset M_2 \subset ...$  is the tower obtained by iterating Jones' basic construction in the case of the inclusion  $N \subset M$ .

DES PROJECTIONS 301

Acknowledgement. The author would like to take this opportunity to thank the Department of Mathematics at Indiana University — Purdue University at Indianapolis for providing a most congenial atmosphere during 1985—86 in which period he was a visitor there, and during which period the above work was understan.

## REFERENCES

; JONES, V., Index for subfactors, Invent. Math., 72(1983), 1-25.

† OCHLAND, A., Subalgebras are canonically fixed point algebras, Amer. Math. Soc. Abstracts, 6(1986), 822-99-165.

† OCHLAND, A., A Galois theory for operator algebras, preprint.

\*STATUL, \$.; Yosculskou, D., Representations of AF-algebras and of the group U(co), Lecture Notes in Math. 486. Soringer-Verlage, 1975.

V. S. SUNDER
Indian Statistical Institute,
R.V. College Post, Bangalore 560059,
India.

Received October 14, 1986; revised January 13, 1987.