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1. IxTRODUCTION
Let X,, X,,...X, be a set of chance variables whose joint cumulative distribu-
tion function F(z,,2y,...%,) is known to belong to some sub-space 0 of the space of
all possible distribution functions F. As for instance it may be known that the X’s
are independently and indentically distributed so that 2 is the sub-space of all d.f’s

of the form

F=0(x))0(x5)...0(x,), e (LI)

where G(z) is some one dimensional distribution function.

In point-estimation the problem is to estimate some population characteristic
0=p(F), where u(F) is a real valued functional defined for all Feq, with the help of
an estimator {={(z,, x,,...x,) where z; is a random observation on the chance
variable X,.

Let (¢, F), for any fixed Ren, denote the different weights that the statistician
attaches to the different values of ¢ as estimates of #(F) and let

"F|t)= IRW(I,F)dF, . (12)

where R is the n-dimensional sample-space, be the risk function associated with the esti-
mator .. Wo assume that there exist estimators ¢ for which the integral (1.2)is
convergent for all Fen.

If #(F t,) < r{Fty) for all Fe? with thesign of inequality holding for at least one
F then ¢, is said to be uniformly more powerful than ¢,

The estimator {, will be called admissible if there exists no estimator ¢ uni-
formly more powerful than ¢,

In this paper we restrict oursclves to only such weight functions as are convex
(downwards) functions of ¢ for every Fen. That is

(At F) PP+ (F) - (13)
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for all £, and f,. If the sign of equality holds only when #,=t, then the function will
Ve called strictly convex. As for examplo the following functions are all strictly convex.
i) =0[*p>1, (i) el-ol—1
@iii) alt—=0]+bt—0p, a>0, b>0

The function |[¢—0] i convex but not strictly so.

2, ADMISSIBILITY AND SYMMETRY®
Woe prove the following:

Theorom 1: If every Feq is symmetric in z, and z, and if lhe umghl j'untlwu W(t, F) be
strictly convez then every admissible esti must be elric in z,, z;.

C
Proof: Let t=I(z,, 7,...%,) be any admissible estimator and let ¢, be obtained from ¢
by interchanging z, with z,.

From the symmetry of F in z,, z, it follows that ¢ and ¢, are identically distri-
buted for all Feq.

r(F|t)=r(F[t,) for all Fen.
Now if we define f,=}(¢+,) then from the convexity of IF(t, F) we have
AP [t)InF ) +4n(Fit)
=r(F|t). . (@21)

Since ¢ is admissible the sign of equality must hold everywhere in (2.1). From the
strict convexity of I(t, F) if follows that the sct of points where ¢7¢," must be of F-
measure zero for all Fen. Thus if the weight function be strictly convex all admissible
estimators must by essentially symmetric in 2,,z;. If the weight function be convex
but not strictly o then there may exist ndm:smble estimators which are not. euentml!y
symmetrio in z,, . But sinco corresp g to any such unsy

there always exist an estimator symmetrio in :,. z, and generating tho samo risk function
it follows that we nced not go beyond estimators that are symmetric in z; z.

Corollary: If every FeQ is symmetric in all the z's then for the purpose of estimation with
a convez weight function we need restrict ourselves to only symmetric functions of the z's.

If however we want to restrict our choice of ¢ to a particular class of estimators
then, for a particular weight function, the above results can be true without F being
completely symmetrio in z,,z,. For examplo suppose that I¥(¢, F)=(t—0)* and that we
want to restrict our choice of f only to linear functions of the z's. \We note that if the
first two moments of z, and its product moments with the other z's are the same as
tho corresponding moments of z; then for any linear estimator ¢

r(Fit)=r(F|t,) for all Feq.

“The attention of the suther has been drawn to a paper by Paul R. Halmos entitled “The Theory
of Unbinacd Estimation” in the Annals of Mathematical Statistics, Vol. 17 (1946), where tho results proved
In this scction were partially anticipated.
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where (, is obtained from ¢ by interchanging z, with z; and so the proof of the theorem

applies.
We now show how tho above considerations of symmetry lead to simple proofs
of results which are otherwise difficult to obtain.

3. SAMPLE FROM A FINITE POPULATION
Consider a finite population sith N values a,a,,...ay and let

1
a= Za, and a‘— v Sla,—a)t.

be the population mean and variance.
Let a random sample 2y, z,,...%, of sizo n be drawn without replacement from
tho population (z, is the ith samplo drawn). It is cloar that the probability

_(Y—n)!
Y

Pry=a, zy=a,...

and is the same for all the (N )/(V-—n)' possible choices of theindices i, ig,...8, from tho
sct1,2,...N. Thusit follows that the joint distribution of the chance vector (z,.z,, z,)
is symmetric in all the z's.

Henco in the class of all estimators of the form

t=c,xy+CoTgt 0467, we (3.1)

we need consider only those for which all the ¢'s are equal i,e. t=c2 Let 0 bo the popu-
lation characteristic we want to estimate and let (¢, F)=(t—0)*
Then

r(F|cz)=E(c2—0)*
=cV(2)+(ca—0)

where V@)= N

If in particular f=a then
r(F|c2)=c*V(Z)+(c—1)%?

and we observe that c2 cannot be admissible unless 0 ¢ < 1. For corresponding to
any ¢, outside the interval 0 < ¢ 1 wecan always find another ¢, in the interval such
that ¢,z is uniformly more powerful than ¢,z. It is conjectured that for the weight
function (t—0)? overy ¢z (0 < ¢ < 1) is an admissiblo estimator in the entire class of all
possiblo estimators,

Again in tho class of all quadratio cstimators we need consider only symmetric
estimators of the form

t=aXz'+b ¥ zzj+c Xz +d. . (3.2)
i#j
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If o* be the populati 3! istio we want to esti and if we add the further
criterion of unbiasedness then from

E(l)=an(v‘+a')+bn_(n—I)(- =1 o'+at|+enatd
=o? for all a and o%

We have

n(n—1)
an—b N=T =1

an4-bn(n—1) =0
c=d=0.

Solving for @ and b and substituting in (3.2) wo have that in the class of all unbiased
quadratio estimators of o* the estimator-

(- .\';1. (e, — 2

25 . (33)

is uniformly the best estimator provided the weight function W(,F) is convex (down-
wards). It is believed that the estimator (3.3) is admissible in the unrestricted class
of all estimators.

4. THE MARKOF¥ SET-UP

Consider the familiar Markoff set-up where x,, z,,...z, is & set, of chance variables
with equal variances o* and expected values

Ex=a,71+..40,a7n =120, m<n
where the a,'s are known constants and the 7's are unknown parameters. Without
loss of gencrality we may assumo that the rank of tho matrix (a,)=m
The problem is to extimato tho 7's and o?,
At first let us assume that tho z's are ind dently and lly distributed

We shall later on see how far this assumption can be relaxed.

We can always find a unitary orthogonal transformation

(z: y)==(B: C) w 4d)
where B'=(b) s=12,..n—m, j=12,.n
and C'=(e,) $=12,..m, j=12,..n
such that Ez=0 A—m

and Ey=¢#0 i=12,.m
where tho £’s aro indopendent lincar functions of the 7's.
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From the independence and normality of the z's it follows that the z's and the
y's are independent normal variables with the same variance.

Thus if we want to set-up a lincar unbiassed estimator of g,5,+...4g,8,
then from the symmetry of the z's and the condition of unbiassedness it follows that
we must choose from

t=at 2yt oA 2 O oot Gl ST

If further we take our weight function as the square of the error then from
the fact that z)4-zy+...4+2, 5 is uncorrclated with g,y,+...4g,¥, it follows that
‘s’ must be zero in (4.2).

We now consider the problem of estimating o3, In the class of quadratic
estimators of ¢ we must, because of the symmetry of the z's choose from the class

l="~3=.’+b,;-;_%+fcmw+Eduy.w+=-‘1=.+if.v.+y~
1]
From the condition of unbiasedness we have

1
t= o Iz +{ bZzz+Tepz,y,+ez, }
= S,+Q w (43)

1f we take the weight function as square of the error then from the fact that S, is un-
correlated with @ it follows that the minimum variance of ¢ will be attained when
V(Q)=0, i.e. when Q=0. Thus S, is the minimum variance unbiased quadratic
estimator of o2, Following the techniquo of Rao (1952) it can be shown that in the
class of all unbiased ors Sy is the mini variance estimator of ¢? and also
that any lincar function of the y's is the mini variance unbiased esti of its
expected value. For proving this the assumption of independence and normality of
the z's play an essential role.

If, however, we want to restrict our choice of ¢ to only quadratic functions and
take the square of the error asthe weight function then it is apparent from the remarks
at the end of §2 that the above proof will hold even in the less restricted situation where
the moments and the product moments of the z's and the y's up to order four are
symmetrical in the 2's and further where S; be uncorrelated with Q. This will be so if
the 2's and tho y's be mutually uncorrelated up to order four and if the third moments
of the of the z's be zeros.

Definition: A st of chanco variables z,, y,...x, aro said to be mutually uncorrelated
up to order p if

Ez/t 2/t ..z0 =Ex*\ . Ex ...Ex,’

for all non-negative integers p,,py,...p, such that p,+pyt.eetp,=p.
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Let 7,,1,,...2, bo mutually uncorrelated up to order p and let

yi=a,7+... a7, e (44)
i=12,..n

be a linear transformation of tho z's.

Under what conditions the y's also will bo mutually uncorrelated up to order
!

Since the chance variables {az,+5,} i=1, 2,...n will also be mutually uncor-
related up to order p it follows that we can, without any loss of generally, assume

that the z's have zero means and unit variances. By adjusting the scales of the y's we
can then have that the y's also have zero means and unit variances.

& 1=V(y)= b at, i=1, 2.
-
and 0=Ey,Ey,;=Eyy,

o
= %"lr"]r(‘#}- ij=12,.n)
.. the transformation (4.4) must bo a unitary orthogonal transformation.

Let ¢,(¢) and k() be the cumulant generating functions of z; and y; respectively znd let
lty, tyy-+-t,) and k{fy, 4y,...8,) be the joint cumulant generating functions of the z's and
the y's respectively. Also let ¢, and k,, be the mth cumulants of z; and y, respec-
tively (i=1,2,...n, m=1,2,...p). Wo know that

cy=k,;=0and ¢;;=k,,=1 i=12,..n,

Now since the z's are uncorrelated up to order p it follows that

cltylyren )=o)+ Fcolt,) e (45)
up to terms with power < p.
Hence k(t)=clant, ayt,...a\)
=¢y(a )+ 4cyat) e (4.6)

up to terms with power < p.
Also Kbty to)=c(Say ) Xa ) e (£7)
=c(Zapt) 4. +cy(Zah)

upto terms with power < p.

A necessary and sufficient condition for the y's to be uncorrelated up to order
p is that

Htptyerb) =kl + ootk l) e (48)

upto terms with power < .
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Now it is easily scen that if
€m=0 for m=3,4,..p i=1,2,..n
then (4.8) will be satisfied and then
k=0 for m=3, 4,...p, i=12,..n
Now if (4.8) be true then we have

c\(t)=klayt, agt,...a50)
=kyfay)+...+kla,0) e (49)
up to terms with power & p.
From (4.6) and (4.9) we have
k=00 €1 +a7 Cont oo +07 Cory
and o (410
Cm=0]} kintal Kot am ko

i=1.2,..n, m=12,...p.

Hence from a Lemma proved earlier (Basu 1951) it follows that if no a,=x1 then
(4.10) can be eatisfied if and only if

Cm=kn=0 i=1,2...n, m=34,..p. e (411)

If some a;)=+1 then it means that y, is a function of z; alone and that no other y in-
volves z;, Then the uncorrelatedness (up to order p) of y, with the other y's will
follow from the uncorrelatedness (up to order p) of thez’s and no further restriction on
the cumulants of £ need be imposed. Thus ignoring such trivial cases wo have the
following:

Theorem 2: If x, 2y,...x, be uncorrelated up to order p then a necessary and sufficient
condition that there exist non-Irivial linear transformations of the z's into y,, ys....y,
such that the y's also are uncorrelated up to order p is that the z'sland therefore the y's)
are normal up fo order p i.e. ¢, =0, m=3, 4,...p, 1=1, 2,..n.

Also if the z's have the same variance then any orthogonal transformation
will make the y's uncorrelated up to order p.

Thus if in the Markoff sct-up we assume that the z's are mutually uncorrelated
up to order four and that #,=0 and B;=3 for all the z's (i.e. the z's are normal up to
order four) then the transformation (4.1) will make the z's and the y's uncorrelated
and normal up to order four and so in the same way as beforo we prove that

So="—_l; ot e (412)

is the minimum variance estimator of ¢® in the class of all unbiased polynomial esti-
mators of degree not exceeding two.
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Hsu (1938) and Rao (1952) proved the same result over a less restricted
distribution space 0 but had, thercfore, to restrict the scope of the choices for the
estimator £,

Hsu, for instance, restricts the choice of ¢ to the class of unbinsed quadratic
forms zAz' for which V(zAx') is independent of the unknown parameters 7,,7,,...7,.
Rao considers only definite quadratic forms.
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