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SUMMARY

It is well known that in the Gauss-Markov mode! (Y, X8, &' V) with
|V |#0, the BLUE (best linear unbiased estimator) of X is Y, the
orthogonal projection of Y on #(X), the space spanned by the columns of
X, with inner product defined as (x,y) = x'V-'y. A quadratic function
of Y;, the projection of Y on the orthogonal complement of -#(X), provides
an estimate of o®. It may be seen that Y = Y, +Y,. When V is singular, the
inner product definition as in ingular case is not ible. In this paper
a suitable theory of projection operators is developed for the case | V| =0,
and a decomposition Y = Y, + Y; is obtained such that Y, is the BLUE of Xp
and a quadratic function of Y, is the MINQUE (Minimum Norm Quadratic
Unbiased Estimator) of o in the sense of Rao (1972).
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1. INTRODUCTION
WE consider the G.G.M. (General Gauss-Markov) linear model, (Y,XB,*V),
where E(Y) = XB, D(Y) = o*V, E and D being expectation and dispersion (variance-
covariance) operators. X and V are known matrices of orders nxm and nxn
respectively, one or both of which may be deficient in rank.

Various computational procedures for the estimation of XB and ¢%, the unknown
parameters in the G.G.M. model, have been given by the author in a series of papers.
The reader is referred specially to Rao and Mitra (1971, pp. 148-150) and the unified
theory developed in Rao (1973a, pp. 294-302) and the references given in Rao
(1973b). The principal tool used in these papers is the generalized inverse of a matrix
whose usefulness in the estimation of parameters in linear models was demonstrated
in Rao (1962).

The object of the present paper is to express some of the earlier results in a
geometrical language, specially using a suitably defined projection operator as a
main tool. Such a discussion may be of interest in generalizing the results to random
variables defined in abstract spaces, and also tie up estimation procedures with the
computation of projection operators.

In the case of non-singular V, we consider the Euclidean space E™ with the inner
product defined as (x,y)=x'V-'y. Let Y, be the orthogonal projection of the
observation vector Y on the subspace .#(X) and Y, the orthogonal projection on the
subspace orthogonal to #(X). Then we have the decomposition Y =Y,+Y,.
Kolmogorov (1946, 1967), who was perhaps the first to introduce geometrical concepts
in linear estimation, showed that Y, is the BLUE of XP. It is easily shown that
Y, AY, for a suitable choice of A is the MINQUE (defined in Rao, 1972) of o
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Thus when | V|0, the decomposition of Y in terms of its projections on orthogonal
subspaces spanning the whole space plays an important role in the estimation of
unknown parameters.

The decomposition of Y = Y, +Y, was explicitly stressed by Kolmogorov (1946,
1967) although it was known to earlier writers in the context of regression theory.

When |V| =0, the inner product definition does not hold, and naturelly the
question arises as to how a decomposilion of Y can be oblained to serve the same
purpose as in the case of | V|#0. The object of the present paper is 10 obtain such a
decomposition by defining projectors suitably when one or both of V and X are
deficient in rank. Let z be a matrix of maximum rank such that z’x = 0,

The main result of the paper is as follows: The unique resolution Y =Y, +Y,,
where Y, e.4(X) and Y;€.4(VZ), provides the desired decomposition. Y, is the
projection of Y on the subspace .#/(X) parallel to (or along) the disjoint subspace
#(VZ) and is the BLUE of X, and a quadratic function of Y, is the MINQUE of &%
Note that #/(X)®.#(VZ) may not be equal to E™, the entire Euclidean space of n
dimensions, but Ye#(X)®.€(VZ) and can therefore be resolved along .€(X) and
MA(VZ). Explicit expressions are obtained for the projection op P such that
PY =Y,

2. PRELIMINARY RESULTS
The following notations and operations on a matrix A are used throughout.
A’ = Transpose of A. R (A) = Rank of A,

(A) = Linear manifold generated by the columns of A,

A~ = Any g-ioverse of A in the sense of Rao (1962), i.e. such that
AA"A=A

(A : B) = Matrix obtained by adjoining the columns of B to those of A.
A* = A matrix of maximum rank such that A’At=0.
M (A)® A (B) = {x+y: x€.#(A),yE .4(B)), where M(A)n #(B) = {0}.

Two matrices A and B may be said to be disjoint if the spaces .4(A) and .4(B)
are disjoint, i.e. #(A)n.#(B) = {0}.

The following lemmas are used in later sections:

Lemma 2.1. Let X be an nxm matrix, V be an n.n.d. (non-negative definite)
matrix of order n, and Z = X*. Then:

(i) X and VZ are disjoint matrices. @)

(ii) A4V :X)=4(VZ :X). 2.2)
Proof. Suppose VZb = Xa for some vectors a and b. Then

Z’VZb=Z'Xa=0-b"Z'VZb=0

or VZb = 0, which shows that VZ and X are disjoint. (i) is proved, then (ii) follows
from (i).

Lemma2.2. LetU be any symmetric matrix such that R(T = V+XUX') = R(V : X),
and T~ be & g-inverse of T. Then:

TI-V=V, TI- X=X (2.3)
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Proof. The results follow by using the definition of T-, observing that
A(V)c A(T),i.e. V=TA, for some A, and similarly X = TA, for some A,.
Lemma 2.3. Let (Y,XB,6*V) be a G.G.M. model. Then:

Yed(V:X)=.4#(VZ:X) with probability 1. 2.4

Proof. Let L be a vector such that L'V =0,L'’X=0. This implies that
E(L'Y)=0, ¥(L'Y) = 0, in which case L' Y = 0 with probability 1. Hence we have
the result (2.4).

We consider two definitions of projection operators which are useful in the
discussion of statistical problems.

Definition 1. Let A and B be disjoint matrices each with the same number n of
rows. Any vector Y e.4(A :'B) has the unique resolution:

Y=Y,+Y;, Y, e4(A), Y,eA(B). (2.5)
Then P,y is said to be a projector onto .#/(A) parallel to (or along) .#/(B) iff
PypY=Y, forall Ye.#(A :B). (2.6)

Definition 1 is well known when .4 (A)® .#/(B) = E™ (the Euclidean space of n
dimensions) The same concept will be extended to the case when (A)® .#/(B) is a
subspace of E*. The properties of P, are examined in the following lemmas:

Lemma 2.4. A necessary and sufficient condition for an operator Py to satisfy
Definition 1 above is

PygA=A, P,gB=0. @7
Proof. Consider Y = Aa+Bb where a and b are arbitrary Then, by definition
Pyp(Aa+Bb) = Aa forall a and b < (2.7).

Lemma 2.5. P,g is idempotent and unique if #/(A) +.#(B) = E™.

The result is well known. However, it is important to note that idempotency and
uniqueness may not hold if A#(A)® #(B) is only a subspace of E®.

Forexample, let A’ and B’ be the unit vectors (I' 0 0)and (0 1 0) respectively.
Then the matrix

1 0a
P=|00 b
00 ¢

for arbitrary values of a,b,c satisfies Definition | and is a projector onto (A)

parallel to .4(B). But P is neither unique nor idempotent, although an idempotent
choice exists, e.g. by choosinga=5b=c=0.
Lemma 2.6. One representation of Py g is

P,g=A(C'A)-C’, C=B-. (2.8)

Proof. From (2.7), PyaB =0« P,z =KC' for some K. Substituting in

PoypA=A,KC'A = AorK = A(C' A)~, which establishes (2.8). To obtain the general

representation of P, 5, we have only to add to (2 8) a general solution of the equation
XA =0,XB=0.
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Notel. Let B= A%, je. Aand B are orth 1 1 ing the whole
space in which case P, g is called the orthogonal projector onto .4(A) under the inner
product (x,y) = xy and is represented by P,,. It is seen from (2.8) that

Py =A(A'A)-A" (2.9)

which is symmetric, idempotent and unique for any choice of the g-inverse of A’A.
Further, if C is any other matrix such that .#(A) = .#(C), then

Pa=A(A'A)A' = C(CC)C =P, (2.10)

Note 2. Let B be a matrix of maximum rank such that A’ZB = 0, where Z is a
positive definite (p.d.) matrix, Then (B+)' = A’Z so that, from (2.8)

Pyup = A(A'ZA)A'E=P,, @1n

It is seen that Pyp ZP,y is sy ic and Pmn is umque for any
choice of the g-mverse of A'EA. The operator P,r as defined in (2.11) is the ortho-
gonal projector onto .#(A) under the inner product (x,y) = x'Zy. In (2.11) A can
be replaced by any matrix whose columns span the same subspace.

Note 3. Let A and B be such that .#(A)® #(B) = E*. Then

Pps = A(A' QqrA)A’ Qgy, (2.12)

where Qg; = I—Pg,. Further, if the columns of C form a basis of .4(A), then
C’ Qg C is non-singular and

Prp = C(C'Qp; €)' €' Qyy 2.13)

which is the expression given by Afriat (1957).
Let us write the decomposition (2.5) more explicitly as

Y =Aa+Bb, Ye.#(A:B) (2.14)
and suppose that a has the representation a = GY. Then
AGY = AG(Aa+Bb) = Aa for all a and b,
<AGA=A, AGB=0,

which shows that G is a g-inverse of A with the constraint 4(G’A’) © .4(B*). We
represent s <h a g-inverse by G,p, 8 g-inverse of A constrained by B. Note that

2.15)

Pus = AGyp. (2.16)
Lemma 2.7. One choice of G satisfying (2.15) is
Gup=(C'A)C, C=B~ 217

Progf. The result is established by verification. A general solution is obtained by
adding to (2.17) a general solution of the equalion AXA =0 and AXB =0.

Definition 2. Let M be an n.n.d. matrix. A matrix P,,, is called a projector into
M(A) with respect to the norm or semi-norm defined M1|x|| = () Mx)}, xe E™ iff
the following two conditions hold.

P YeA(A), VYeEn, (2.18)
[Y-Pou Y| <||Y-AX], VXeE=, YeE~, (2.19)
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The above definition was introduced by Rao and Mitra (1971) and further examined
by Mitra and Rao (1973).
Lemma 2.8. P, salisfies the conditions (2.18) and (2.19) of Definition 2 iff

(i) A(Ppy) < A(A), (2.20)
(i) PyyyMA = MA. (2.21)
Proof. Condition (i) is equivalent to (2.18) and condition (ii) to (2.19); then the
statement of the lemma follows. As a consequence of (i) and (ii) we have
(iii) PAyM = MP, .

Note that P, need not be idempotent or unique unless M is p.d. We denote by
{Pae)s the class of all matrices P, satisfying the conditions (2.20) and (2.21).

Lemma 2.9. One representation of Py, is

Pou=A(A'MA)-A'M. (222)

Proof. The result is established by checking that P,,, as defined in (2.22) satisfies
the conditions (2.20) and (2.21).

Lemma 2.10, Let M and A be as in Definition 2 and denote A* by H. Further,
let T =M+ AUA’ where U is any symmetric matrix such that R(T) = R(M : A) and
T is n.n.d. Denote by T~ any n.n.d. g-inverse of T. Then:

(@) {Pam} = Pramsh (223)
(i) Plp+Papm=1 in M :A), 229
(if)) Pypu=Par- in MM :A). @29

Proof. Result (i) follows from the definitions of the projection operators involved.
To prove (ii), observe that .#(A) and 4(MH) are disjoint and
AM : A) = 4(A : MH). Consequently,

Pusor+Paiza =1 in 4 (M : A). (2.26)
Now using (2.23),
Prusa = Pim- (2.27)

Substituting (2.27) in (2.26), the result (i) is established.
Since by definition (Lemma 2.4)

PumnA=A, PpyyMH=0 2.28)
the result (iii) is established if in (2.28), Papyg is replaced by P,—. Consider
Pur-T-A=T-AoT-P,-A=T"A 2.29)
Multiplying both sides of the last equality in (2.29) by T we have
TI-Pyr-A=TT A=>Py-A=A (2.30)

since both P, and A are contained in the range of T. Now
Ppr-T-=T-Ppr- = TPpq-T~ = Ppr-
= TPyr-T-TH=P,-TH=P,;- MH. (231
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But
TPjr-T-TH = TPjy- H =0 (2.32)

using (2.19). Hence the last expression in (2.31) is & null matrix. This together with
(2.30) proves the result (iii).

3. THE GeNERAL GAUss-MarRKoV MoODEL
Consider the G.G.M. model

(Y,XB,0'V), E(Y)=XB, D(Y)=0'V, @1

where V may be singular and X may be deficient in rank. We say that a linear function
L, Y is the BLUE of the linear parametric function p'@ if Ly X = p’ and

L,VL,<L'VL VL3L'X=p.

For a wider definition of the BLUE called BLUE (W) which is relevant when V is
singular, the reader is referred to Rao (1973b). The main results are given in the
following theorems, where we denote Z = X+,

Theorem 3.1, Let Ly be any given vector such that LyX = p’. Then L, Y is the
BLUE of p’' @ where

L, = A-Pyy) Ly = (A-Pipp) Ly, 62

Proof. A general solution of L'X = p’ is Ly—ZX where X is arbitrary. Then by
definition [|Ly—ZA||y 2|| Ly — Pzy Ly||y which proves the first part of the equality in
(3.2) and the second part follows by applying (2.23).

Corollary 3.1. Let A, be nx k matrix such that AjX =x’. Then ALY is the
BLUE of =’ (k parametric functions) where

A, = (-Px) Ay = A-Pyzyn) Ao (3.3)
Theorem 3.2. The BLUE of XB can be expressed in the alternative forms
(@) A-Pp)Y, (3.4)
() PyyzY=(01-Pyzy)Y, (3.9)
(€) Pyr-Y. (.6

In (c), T~ is an n.n.d. g-inverse of T = V+XUX' for any symmetric U such that T is
n.n.d. and R(T) = R(V : X).

Proof. The result (a) follows by choosing Ay =1 in the Corollary 3.1. The equi-
valence of (a) with (b) is a consequence of the equality (2.23) observing that
Yed(V:X)=#(X:VZ). Again (c) is a consequence of (2.25).

Corresponding to expressions (3.4)~(3.6), we have the decompositions

@ Y=@-Po)Y+PRY, 6
(®) Y =PyyY+PyyyY, (38
© Y =Py Y+A~Per)Y, 69

where the first term on the right-hand side of each is the BLUE of XP and the second
term is the residual vector providing the MINQUE of o*

17¢
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Theorem 3.3. The BLUE of an estimabl ic function p'B (i.e. 3 an

L3L'X=p)is p’' 8 where
f=GuzY, (3.10)

where Gyyyy is 8 g-inverse of X constrained by VZ as defined in (2.15).

Proof. From (3.5)

the BLUE of XB = Py Y = the BLUE of L'XP = L' Py, Y
=L'XGxy2 Y = p’ﬂ

using the relationship (2.16).

Theorem 3.4. The MINQUE estimate of fo, /= R(V : X)— R(X), can be written
in the alternate forms

@ YZ(ZVZ)-zv, )
() YPyxV PyxY, (3.12)
(©) YT (I-Pxr-)Y. (3.13)

Proof. The MINQUE estimator of fo* as defined by Reo (1972) is Y' Z(Z' VZ)-ZY
which is expression (a). The equivalence of (b) with (a) is easily established. Since
Y e.4(T), (c) is established if

TZ(Z'VZ)-Z'T = TT-@-Pyp) T

=TI-Pynx T applying (2.25). (3.14)
Writing T = VZE + XF, the left-hand side of (3.14) is
TZ(Z'VZ)~Z'VIE =VZ(Z'VZ)-Z'VLE = VZE. (3.15)
The right-hand side of (3.14) is
TT~Pyyx(VZE + XF) = TT-VZE = VZE, (3.16)

and the equality of (3.15) and (3.16) proves the result (c).
Note that when V is non-singular, expression (c) can be written as

Y VAA-Pyy-) Y 3.17)
which is the familiar expression for estimating fo®.
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