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Abstract

A general theory of double sampling lor cstimating a parameler
@(»), utilizing information about a suppleinentary parameter ¢(x!
obtained inexpensively through a preliminary large sample, has been
presented.  The general results are then used to deal with the problem
of estimating variance u: of a character y, in case of bivariale popula-

tions, where the information on the other character v, collected through
the first phase sample, is expected to improve the usual unbiased

estimator of a; . A wide class of estimators is discussed. an asymptoti-
cally optimum subclass is identified and the cslimalors hased on two
phase sampling are compared with the usual unbiased estimator of
a: in case of single phase sampling, under a linear cost (unction. In

particular the results are derived for bivariate normal populations.

1. Introduction

Positive role of auxiliary information in obtaining sampling strategies
with some optimal properties is now undisputed in the sphere of sample surveys,
In the case of bivariate populations, the use of information on an auxiliary
character x for estimating the mean of other (principal) character y has been dis-
cussed widely by various authors. Recently the problem of estimating popula-

tion variance a: using information on x has been discussed by Das and

Tripathi (1978), and Srivastava and Jhaji (1980). Further, problem of esti-
mating coefficient of variation Cy using information on x has heen discussed by
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Das and Tripathi (1981, and Tripathi, Upadhyaya and Singh (1987'. Dealing
with the general problem of estimating a parameter 9(y) based on character y
in case an ancillary parameter @(v, based on v it known, onc may define, follow-
ing Das and Tripathi (1980), a class of estimators

.= 0()) - ‘1(9(-") 0("*’))fl (o0 1° e
[Q(x] — ly(@lx)— @]

for @(y) in case of gencral sampling designs, where @(y) and @(x) are
estimators of §(y) and P(x) respectively, @ is a suitably chosen constant and ¢,
(i =1, 2) are suitably chosen statistics (which in particular may be constams;.
The class of estimators defined in (1+1) requires apriori knowledge of @(x..
In the situation where @/x) is not known. the abo e class of estimators cannot
be used in practice. However il collection of information on x is not very
costly two phase sampling or double sampling procedure may be used to extend
the class in 11-11 [or estimating @(y' even when @(r) is unknown.

In this paper a gencral double sampling procedure is developed for esti-
mating @y} in case §(x) is unknown hut information on x is cxpected to improve

usual estimator sl,v, ol 9(y;. The peneral properties of the class are studied and

. . . . . . il
the results are then in particular. obtained lor cstimating o,

2. A general doubl pli; h for estimating any Parameter
uslng supplementry inform-non

We confinc ourselves to fixed sample size designs. Let a preliminary
large sample of size » he selected al imoderate cost according to a specified samp-
ling procedure and observalions only on the auxiliary character v be collected.
Further let a subsequent small sample ol'say m units be selected according o another
specified sampling procedure and the observations on principal character y be
made. The second phase sample may cither be a subsample of the first or in-
dependent of the first in which case both x and y are 10 he nbserved. Let E(+),
V,(+). G)(+) denote the unconditional and Fyf 3, V,(), Cy(+) denote the condi-
tional (given the firtt sample) mean, variance and convariance. Let o“)(.ﬂ be
an unbiased estimator of @/x) hased on the observations of the first phase sample
only and L) fv) and L () be the nnbiased estimalors of @ (x) and @ () respe-
ctively based mainly on the observations of the second phasesample. For the
case of subsample, we shall further assume that

Fy(9g) (01 = @y (%)
We note that in hoth the cases, of sul le angd i d )l

P! nt

Gy @y 0. 9 (9) = Gy (913 ) wm(x)) =o @)
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Further, in case of independent samples if L™ (x) and Qm (») do not use any
information obtained on the first phase sample, then

Cov (pm (x).lv(”(.rn = Cov ((pm(,n. L (x) = 0,
But in general P2y (») and q>m(x) may utilize the information on the first
phase sample in the case of independent samples too, thus

Cov (@(y) (x)- @y (x1 ) and Cov (95 ()} 9y (¥))
would not be zero for some sampling schemes.

We cxtend the generalized method ol cstimation in (1-1/ 10 the class
of estimators for ¢(y) defined by

Py U) = 1@y %) = @y ()
T () + (L= 1) 9y () 1°

(9q,@I", -~ @2

wherew is a suitably chosen constant and ! and {* are suitably chosen
statistics such that their means exist. Regrestion type estimator (e.g. a = 0),
ratio and product type estimator (e.g. ! =Q,#*=0 and a= +1 or -1),
regression cum ratio estimators (c. g { =0,z = 1) and large number of other
interesting cstimators may be derived as particular memhers of the class.

In order to investigate properties of the class 4 in (2:2) we impose the
lollowing restrictions on the choises of / and (* :

() in case ¢ and /* ar¢ not constants, they are such that
Et="1T+0(m"), r>0,
Ei*= T* L O(m ™). > 0,
where T and T* are the constants (parameters) not depending on m.
(i) V(t), V(t*) and Cov 1t, ¢*) are Oim~ l). covariance between

I (or 4*) and any of the #yy (%), q)u)(.r) and "(2)(-"-\ are O(m™"), and all the

S here 1. 0.

higher order moments arc of the order m
(iii) +* is such that
s 0 — ol
(-1t )lpm(-\f) 1 Om(-\l ¢(»\)|

o(x) |

<!

Under the conditions (i1, {il) and (iii.. thr Diases and mean squared
rrors ( MSEs) of the class of estimators in # to the terms of order O/ 1), are
given by
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1
B(d) = 9(») [‘ﬁ,: ) {(l-'r-\’c' (95, (8) + T Cg (1) }

2% (1="1% Cle (0, @ (x)} + se— Ct (9, (x))
m e 2 (i)
=@t {(1=T*1 G (@) o1, @ygy () +(T*) Coyy () ) )
= 19(0)/90)) & (1 =T*) { C(@) ), Bpgy (1) = Clo g (1), @46} 1)
< a(T.(1=T*(p(x)/9) { CU )y (3) ~ CHopy, (1))

= 2C(0y ()0 @y (3)) ] ~ @R IT (€ (alis ) = Clonladtd

raTr (O -Camm)]| @
and M(d) = 9*03) [ G (9 () + Q { Gy (9)) + C* (@ ()
= 2C(93y (9, 15y (0 } = 2Q (€ (93 (- By (1) = C g 9): 9y GH]]
respectively.  where G (9, (1) = V (@, (+) / @%(x), i=1. 2
C (9 (3), %) = Cov (@ (x), 4]/ 9lx) T*. (i=1,2)
Gy (x), 01 = Cov (9, (x), H(T) 9lx): C ) O @y (5
Cov (o) 1 9y (¥ ”
ST Tehiem o U=LE
C L@y (x) 9y (x)) = Cov (@, (). By () 1/9%x):
C @y 1 = V (0 () 1920,
and Q= a(l =T + {0/ )T
The optimum value of (a. T. T*) which minimizes M(d) in (2-4) is given by
ol(x) [COV (@) (1) Bg) (821 = Cov (@ (1), 9y (3) ) ]
T ol Ve, (0 + Vieg, (1) = 2Cov (9, (7). ) (7]
_ 9l

= = e 2."
o7 Poy Qe @)

where is the re ion coefficient of ) on
ﬁ"(z). i ress Pz ()

U= @ (x) — @, (xi. Hence. the resulting (optimum) MSE of 4 is
given by

Moldy = Vg, (3) - Qp (9(3):etx)™] Vo, (%))
(2) ()}

"“’m("" - 2Cov !¢(|)(x).v(2)(.\'))} s (260
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Remarks
(1) In case of subsamples,
M(d) = V, (E, 0(2) O)) +E,V, (wm\(y) )+ QU9 2 E,V,y (W(z\ ()]
= 2Q(e0N/9(x)) By Ca (g, x) ] 27

P(x)
o0y

Qo= [E: a0, 00, g 1B VA0, 510 ] 2

My(d) = V, (E, %2 ) +E Vy (0(2) )

- Q (30 /¢(~))'{ L,Va(e, () } ERCET
(ii) In case of independent samples, the expression in (2-4) to (2-5) may be
used directly in conjugation with (2-1).
(ii) Let « = 0 then in case of subsamples, the regression type estimator
do = Py (N =1 (95 (%) = 9y (%)) o (2:10)
with
T = E, G, (0(2) O D)%) )/ Ex Vi (9 (%) )
= Bo ) o)
would be an asymptotically optimum estimator (AOE) in the class 4 with
M(dy) = My(d).

In particular one may choose

~n

t = %m())' 0(2)(x) =G 0(2)()’) 0(2)(*') VIVy (@(2)(-') i

in dy provided cocfficients of variation of 0, (0(2) (x) ) and
C, (Qm(y), (p(z)(x) ), unbiased estimators of V, (wm () ) and

Cy (q’(Z) (), P2) (x) ) respectively, are of the arder m™, r > (.
(iv) One may define another class of estimalors for @, as
e=2(0p () 9 (%) 0y (%)

where g(-) is funclion satislying certain conditions similar to those given by
Srivastava and Jhajii (1980).

It may be shown that none of the estimators in ¢ have MSE smaller
than Myld) in (2:6). Thus AOE in the class 4, in particular d, in (2-101.
would also be AOE in the class obtained by the union of classes d and .
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(v+ Results for regression and ratio esti , for ion mean

@5 = ¥in casc p(x) = X is unknown, based on double sampling [(Cochran
(1977) p. 339. p. 343 | and numecrous other cstimators may be casily derived
from above gencral results.

3. Application of gemeral theory to the estimation of population
variance using double sampling

In bivariate populations. the problem of estimating the Lati

. L] . 1 . .
variance g, of character y in casco, the population variance of another

(auxiliary) character v, is known has been discussed by Das and Tripathi (1978),
and Srinivastava and Jhajj (1980). However in many situations of practical

importance a" may not be known while the use of auxiliary information

Jd

on x may be exp to imp the usual unbiased

t 1
5 ofe, . In

such situations, on¢ may obviowly resort to double sampling provided
collection of information on x is not very costly. One may define estimators

1
for o, as

1 2 2
d = .r'(z) - ("(2) - ‘t(l)) >0,
2 1 t &
% =5y (‘-(l)/ ’sm)
] 2 2 1 B
dy =.r'(2] J‘(l) .\"“) M -2y 51(2) .
2 2 2 1
(0 =ah sy 2 "v(z)(‘z(z)/ ‘s(l))‘
] 2 1 1
b= (kho sy = Ry (‘f(z)/’m))‘
I — 3 3 2
“ =\ 'nf = )
2 1 2
d =“vu)(’=(2)/ ‘=<1))'

in case of genecral double sampling scheme, where ), (i=1 to 4) and « arr

4,

N 1 . . v 1
suitably chosen comstanis. <\ is an unbiased estimator of g, hased on first

()
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phase sample of size » and s:mlnd Sag2) BFC unbiased estimators of q; and

u', respectively based on second phase sample of size m. Obviously all these

estimators are particular members of a very wide claxs of estimators

‘Q

~ v T s ~(2)"’(=m =<n)
'(l\

= @)
[“’.(.)+(' = s

The results about ;: may be derived on the line of discussion in section 2 and
the results about 4' tod* may in turn be derived from the results about
;: + However to bring out the salicnt features of discussion we shall confine
ourselves to SRSWOR at both the phases in which case

:“) = (n=1) Z(.\' —.v) R '(2) (m—l)-lz:(},— I

jou | =1
n
1:(2 = E (x - ;_)'/(m—-l)
i= 1
—_, J: ¥ being sample means. In the following discussion we shall retain

terms uplo lhc order n~', and neglect sampling fractions, /N and m:N. where
N is the population size in case of finite populations.

Using the general results in (2-4) to (2-9) we have
Theorem 3-1. [ both, the first phase and sccond phase, samples are
simple random samples, the large sample approximations to the MSE of

1 denl 1

L . .
a, in casc of hsamples and ) ples arc given by

N (;;)-_~ (L -+ (Myfm, e (32)

Mo(;: )= (M:/») + (My/m) 33

respectively. where M, = [2(Cyy (5.5 = 1) = QBef¥) = 1) | Q).

and

T ORI B CY NS
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Q=a(l =T + (u: /o; )'r. T and T* being defined in Section 2;

B10) = s Olay » Ba(x) = ey, Cua( 8) = H—.(T” and

ﬂ' S,

Hr g (5, x) being the (r, g)-th central product moment and 2,(») the rth central
moment. The MSE in (3-2) and (3-3) are minimized for Q = Q, and Q = Q
respectively, where
Q= Cnr s =l ¢ VB 1
(B -1 IRCEL

o __n VB () -1 e (3.
and Q, = \/—B,(x)—l (3-5)

(3-4)

¢* being the correlation coefficient between ( )—})' and (s — %)'. Hence

the resulting (optimum) MSEs of ;: in case of subsamples and independ
samples would be
~1 l (n=m) (Cyy(px)—-1)*
(5 )= (o fm Yoo -1 - 25 HEEE]
e (36)
and
n (Cs (y,x-) -1
W (5 )= (/e - Tmtw B -D 1
cee (347)
respectively,

It is found that in case of bivariate normal population

M, =20, Q (26" - Qs M,=(2a:—Ml). M} = 26, Q!
O, = 0Q° L
2.u~p.Q.,-(m+n)p,

() (i) (] o
£ (4)- (4 )0 - ()] o oo
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where p is the correlation coefficient 1 yand x,
Remarks : (1) In casc of subsamples, to our order of approximation, the estimator

1] L] 2
G =tyg~h (‘:(2) - fm)

L] 1]
( (%) = ‘vm‘:(z))

with tg=—— —-— - =-=-—=
(m‘ (%) —::(2))

in gencral and with fp=1r' ‘:ﬂ)/‘:(z) in particular for bivariate normal
populations would be AOE in the class (3:1), where

M (0 = Yo% ~Tn) 5= ) Im

o ]
m) = 3 (4=% )im and
i |

ris the sample correlation coefficient between y and x based on second sample.

(ii) In case of bivariate normal population with second phase sample as a
subsample of the first phase, the optimum values of a and A (i=1,2,3,4)

in the estimators 4, to dy would be given by
Ay = p’(a: /a: ) and g = A, = pt, (i =2.3,4).
4. Two Phase Sampling Versus Single Phase Samplng
Let the cost function be of the form
C=ay+nC +mCy. RN

where C is the total cost, g, is averhead cosi, and C:; and C, are the cost per unit
for first and sccond phase samnles respectively.

Following Cochran ( [ 1977) p. 341] it is easily found that the value
of n and m, which minimize MSE in (3-2) for fixed budget C in (4:1), are
given by

(G- a) VMLV (MG + v G ]
and s (449)
my= (G = ag) /My | [ vC; (VM Gy + VM, G,
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The resulting MSF, of c" would be

.\I.(;: ) = \,—M‘%? PG )’/(c “ag e (43

Instead of double sampling for collecting information on x if all resources are

. . L]
devoted to observe y alone an unbiased estimator for g, would be

Z(Jg‘f-.-),/("'—ll- U

where size n’ ol the single sample is given by ¢ =gy + 7' Cq.

Obviously
\'( )_ o, () ~ 1) Cy ey
T (C-e
From (4-3) and (4:3) the relative efficiency of :x: over :: is given by
~t 2 2 iy an
RE(c'. 5, )= 1 -8+ 8(CyJCy) ] s D)
where
8= M/ (Bl - I l’:
Hence. double sampling will lead to gain in precision if
CICy 231 - T |P=[1 - \T=7 )4 - &7

In case ol bivariale normal population. with optinum choice of
Q, viz. Q4 = p, the inequality in (4-7, rednces o

et [1=11-p4]?
f RS S St 5T e (448)
S (1-ph] I3
From (4:7) we infer that 1o abtain gain in precision by using double
sampling «ver single phase sampling the ratio ol the cost per unit in the first
phasc sample to the cost per unit in the sccond sample must must not exceed a
critical valuc.

€1 G < n

o N . ~1 ] . e e . .
I'he form «t' R. E. (a,, Y ) in t4:6) is siniilar 10 that ol relative

efficiency of wsual regression cstimator lor population wwan in  donble
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sampling over sample mean and hence following Cochran (1977, pp. 342)
the relative efficiency curves can be drawn easily with varying values of 8 for
certain values of (C,/Gy).
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